

Vom Betriebspunkt zur kennfeldbasierten Dichtungsauslegung

WOST 2019 Dipl.-Ing. Rolf Johannes 07.06.2019

Content

1 | Introduction

- 2 | Motivation
- 3 | Seal Simulation
- 4 | Scalar Based Evaluation
- 5 | Signal Based Evaluation
- 6 | Field Based Evaluation
- 7 | Results and Outlook
- 8 | Summary

Introduction - EagleBurgmann at a glance Leading market position Strong backbone Revenue with experience in sealing technology a member of EKK/Freudenberg for more than since 2004 EKK **789,4** million Euro **130** years **FREUDENBERG Balanced product portfolio Mechanical Seals** Seal Supply Systems **Specialties Expansion Joints** Worldwide presence Production Manpower 60 subsidiaries, 132 service centers worldwide and 162 sales offices

EagleBurgmann.

a member of EKK and Month FREUDENBERG

Introduction – Product range

Mechan	ical Seals	Speci	Expansion Joints						
Mechanical seals for pumps	Mechanical seals for agitators	Mechanical seals for compressors (DGS)	Carbon floating ring seals	Metall expansion joints					
Magnetic couplings	Seal supply systems	Gaskets & Stuffing box packings	Special products & couplings	Fabric expansion joints					
TotalSealCare									
EagleBurgmann.									

a member of EKK and Mark FREUDENBERG

Motivation

30 Years ago:

Today:

• Water

EagleBurgmann.

a member of EKK and M FREUDENBERG

- v_g = 48 m/s
- Δp̃ = 100 bar
- t_E = 55 °C
- Cost of downtime: ~ 10.000,-

- Multiphase
- $v_g = 3 100 \text{ m/s}$
- $\Delta p = 10 250$ bar (400 bara)
- t_E = -20 250 °C
- Cost of downtime: ~1.500.000,-

a member of EKK and Mon FREUDENBERG

Seal simulation

- 50 geometry parameters
- 8 discrete forces
- 4 boundary conditions
- 6 material properties
- 4 calibration parameters
- 8 dependent or correlating parameters
- TOTAL: 85 Parameters

2d coupled fluid-structure solver designed to calculate mechanical seals.

- Typical execution time: Minutes!
- Unlimited parallel execution

- Define dependencies and correlations
- Geometry tolerances according to drawings
- Get information from additional calculations
- Extract data from company standards
- Fall back to best practice and literature
- Document sources and values
- Most time consuming part of the workflow

EagleBurgmann,

Scalar based evaluation

Nominal input for field

c PO c PI c RPML c Tl c T2 1.00E+05 1.00E+05 0 30 20 3.00E+05 1.00E+05 0 30 20 6.00E+05 1.00E+05 0 30 20 1.00E+06 1.00E+05 0 30 20 2.00E+06 1.00E+05 30 20 0 3.00E+06 1.00E+05 0 30 20 4.00E+06 1.00E+05 0 30 20 5.00E+06 1.00E+05 0 30 20 20 6.00E+06 1.00E+05 0 30 7.00E+06 1.00E+05 0 30 20 8.00E+06 20 1.00E+05 0 30 9.00E+06 1.00E+05 0 30 20 1.00E+07 1.00E+05 0 30 20 1.00E+05 1.00E+05 300 30 20 3.00E+05 1.00E+05 300 30 20 6.00E+05 1.00E+05 300 30 20 1.00E+06 1.00E+05 300 30 20 2.00E+06 1.00E+05 300 30 20 3.00E+06 1.00E+05 300 30 20 4.00E+06 1.00E+05 300 30 20 5.00E+06 1.00E+05 300 30 20 6.00E+06 1.00E+05 300 30 20 1.00E+05 7.00E+06 300 30 20 8.00E+06 1.00E+05 300 30 20 300 30 20 9.00E+06 1.00E+05

Varying input for single OP

Simulation framework

	File Name Project	Batch		_	Units SI	Interface Model	ILK Plain (Assignmetric) Faces - Any Fluid the manufacture and not saved. the manufacture as unrights			
	FEA Type	FEA Type NonLinear Analysis Type FS		ype FS		Valables for Selected Interface Model				OK.
		Operating	Conditions			Initial Taper Angle o	1	0.000383	1: [m/m]	Cancel
	Speed	Let	3000	(rev/min)		Helium Light Bands		6.00001	(HeLB)	
	Pressure	÷PI	100000	(Para)		Face Asperity Stren	gth	2e+010	[Pa]	
Geometry Definition - Face Seal		P 🕂 T1	27	(C)		Face Surface Roughness	hness	7e-008	[m]	
Name Units SI Anal	Heat Flux	÷ Q1	0	[W/m°2]		"Minimum Film Thick	iness	3e-007	[m]	
Dutine Polygon Hesh Points Across 20 Elem Face Prints	Pluid	÷ FLF	PROPANE.MSTV		*Face Temperature		30	(C)		
sive Diameter Z Radks	4		9	elect Fluid		*Face Contact Frac	tion	-	0	
(n) (n) (n)		Seal Varial	ales for all Sc	lutions						
1 0.164 0 0	Balanc	e Ratio or	0.8304	15						
dd Point Between 1 2	Balanc	e Diarneter	0.149	[m]						
Delete Point 1	Spring	Pressure	163890	[Pa]						
Material SubRegions		lote		_		Value used for first	t approxim	ations and solu	ution cases	
gion Number 3 Points 2	Contac	ct Friction Coeff. 0	HY. 10.06			where specified as a given value.				
Point Diameter Z Radius	T Refe	T Reference 20 (C)				Optional Variables:				
	K values F	or first approx	imations and	FEA only solutio	ns:	Operating Condition Ranges	Dynamic	Tracking	0-Rings	
tdd Point Between 1 2	K - Flui K - Cor	a fact	0.5	-		Fluth Flow and	Face	Heat	Miscellaneous	
lelete Point			1	_		Chuning Power		e Upsons		
elete SubRegion 3										
Activate Subregion Add										
Add Subregion Between										
and and a second										
Note										
,										

OptiSlang Postprocessing Varying performance for single OP

EagleBurgmann.

Signal based evaluation

- Limits of current approach: Parameter identification
- Solution: Signal processing calibration (Dynardo tutorial) Use one signal for fit Use other signal for validation

Very successful!

٠

WOST 2019 | Dipl.-Ing. R. Johannes | 07.06.2019

Field based evaluation

a member of EKK and Month FREUDENBERG

1e+005 1e+003

2.25e+003

dynando WOST 2019 | Dipl.-Ing. R. Johannes | 07.06.2019

Field based evaluation

Results and outlook

Results:

- Distribute information within the company (EXCEL-Add-In)
- Quantify overall robustness
- Quantify safe operation envelope
- Deeper insight
 - -> simplify future problems (optimization)
- Identify impossible challenges
- Better visualization

Outlook:

- Distribute information:
 Use MOP-DLL as container
- Improve efficiency: Data transfer
 Speed of calculation (CI, parallelism)
- Simplify workflows and systems

4	A	В	с	D	E	F	G	н	1	J
1	optiSLang MOP solve	er versio	n 7.3.2						and an average and a second se	
2	Meta model databas	e was in	ported from:				a David 1 Marci		NUMBER OF STREET	
4	Extrapolate	0					100		1.1	
5		Speed	Pressure	Full model			-			
6	MDOT_Var	0T_Var 6.51% 98.57		99.36%	99.36%					
7	MDOT_Sigma	52.83%	70.73%	99.57%						
8	MDOT_Mean	68.38%	56.50%	99.13%					1	
9	MDOT_Min	58.66%	63.17%	99.12%						
10	MDOT_Max	76.97%	51.19%	99.68%						
11	MDOT_Quant_95	75.45%	47.10%	99.75%						
12	MDOT_Quant_5	61.43%	63.42%	99.10%			- Ca	Den Carl	-	
13	3								dypando	
14	1	Parameters		Responses						
15	Lower Bound	1000	500000							
16	Upper Bound	6000	10000000							
17	ID	Speed	Pressure	MDOT_Quant_5	MDOT_Quant_95	MDOT_Max	MDOT_Min	MDOT_Mean	MDOT_Sigma	MDOT_Var
18	0	6000	1.00E+07	-721.7223693	-255.1784825	-235.4755808	-778.24747	-438.3588858	129.0865479	0.829431569

Sun Microsystems Solaris computer cluster, CC 3Y 2.0

EagleBurgmann.

WOST 2019 | Dipl.-Ing. R. Johannes | 07.06.2019

Summary

- Complex customer requirements can be met
- Some answers can not be provided on scalar basis but on signal level
- From signal to field it is just a small step
- Field data provides great overview
- Export to OptiSlang leverages full potential
- Greater insight during the design process
- Easy distribution and visualization of statistical information
- Better product and customer satisfaction

Rely on excellence

Thank you for your attention! Questions?

EagleBurgmann Germany GmbH & Co. KG

Aeussere Sauerlacher Str. 6-10 82515 Wolfratshausen, Germany info@eagleburgmann.com eagleburgmann.com

Learn more about EagleBurgmann

