

ANSYS SPEOS Robust Optical Design through Multiphysics Simulation

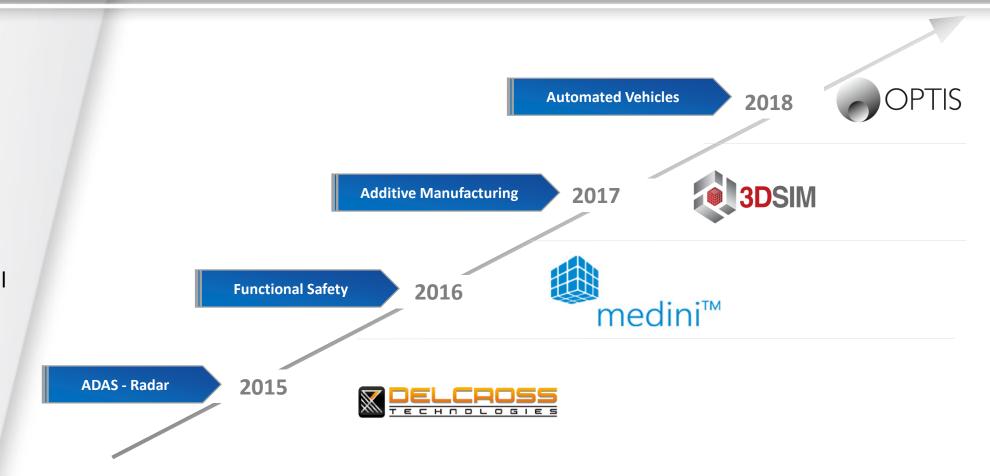
Günther Hasna (Guenther.hasna@ansys.com)

Director Application Engineering

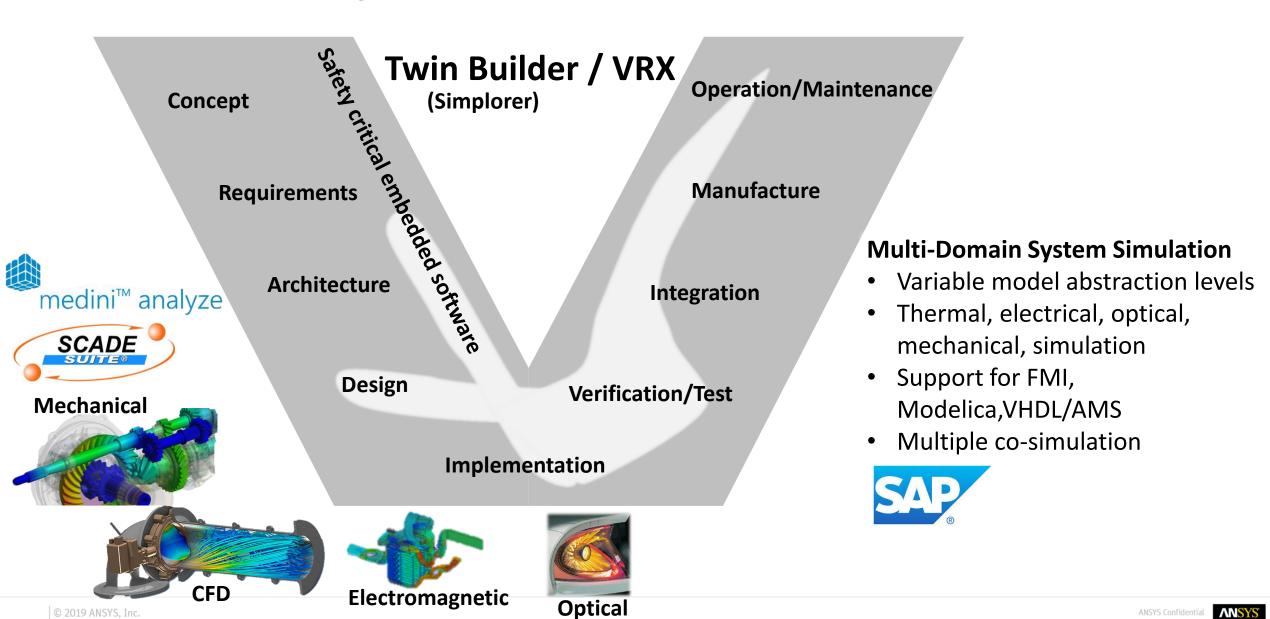
Europe, Mid-East and Africa

ANSYS OPTIS

History of OPTIS integration


Strategic Investment

VISION


Focus on

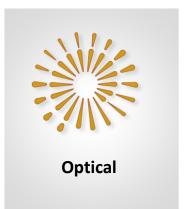
solutions

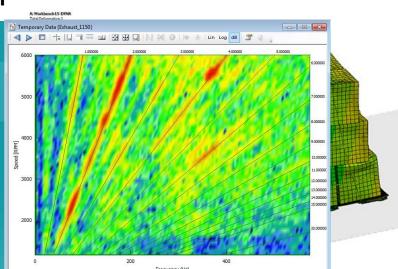
Empower customers to deliver transformational products.

The ANSYS Journey

ANSYS OPTIS Multiphysics

Use Cases Overview



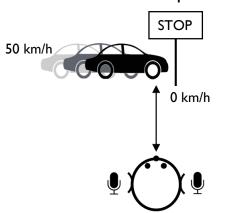


Explicit Dynamics

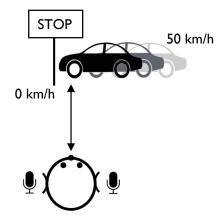
Noise and vibration

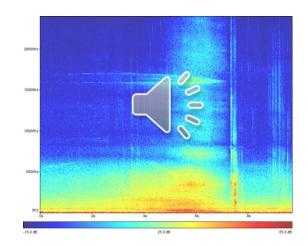
VRXPERIENCE

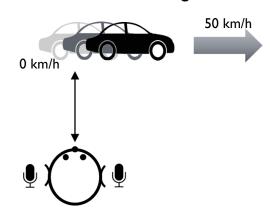
Sound Dimension

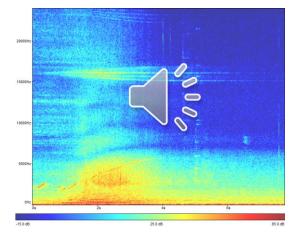

Additive Manufacturing

Fatigue & Lifetime Rigid Body Dynamics

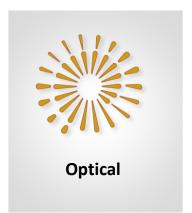

Exterior – stop and start recordings


From left to stop in front

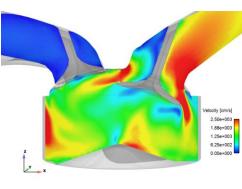

2000Hz1100Hz1000Hz500Hz600Hz-


From right to stop in front

From 0 start to right



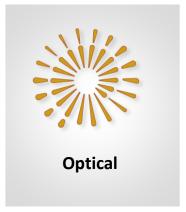





Multi-Phase

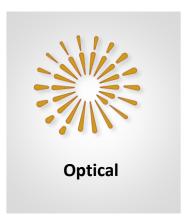
Injection Molding

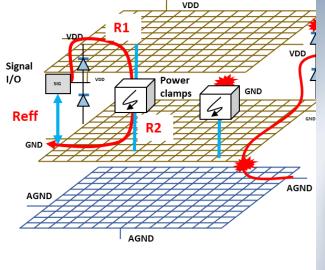
NNSYS

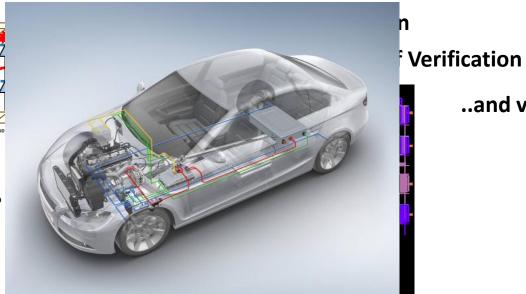


Quasi-static EM Extraction
Signal Integrity
Electronics Cooling

Antennas, Wireless Systems DC IR Drop







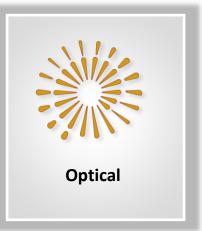
..and validation

ESD Analysis

ANSYS Confidential

Model-Based System Validation
Functional Hazard Assessment
Hazard and Operability
Failure Mode and Effects Anal
Fault Tree Analysis
Safety Plan
Reliability Prediction

ARP 4754A ARP 4761 IEC 61508 ISO 26262 SAE J1739 SN 29500 IEC 26380 IFDES, ...



Optical System Design

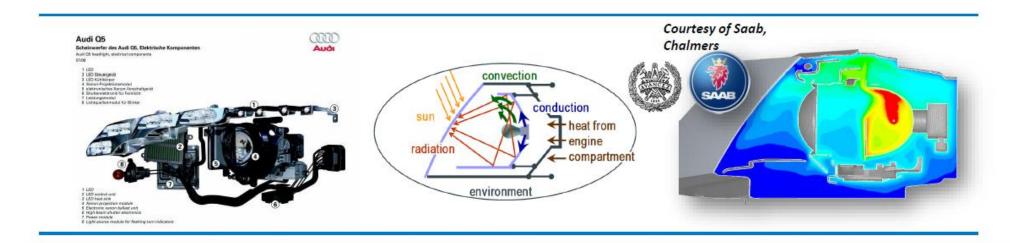
Heads-up display
Interior Lighting
Lidar
Camera
Virtual Reality
Real-time Closed-Loop

Automotive Headlamp Design with ANSYS SPEOS

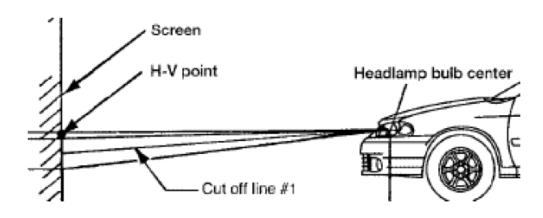
Introduction to Headlamp Design

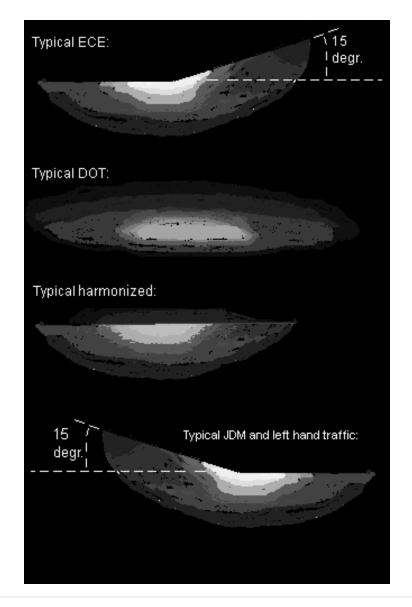
Background

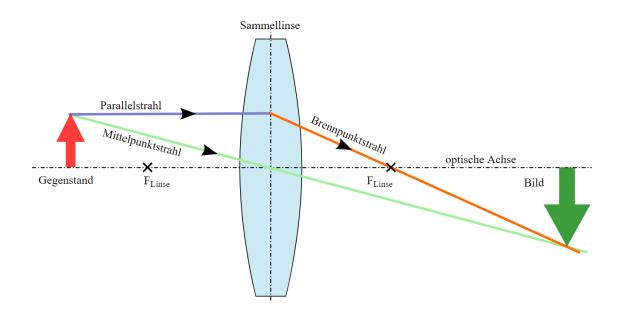
- Headlamps are an important styling component for cars for brand recognition
- New technologies like LEDs provide new challenges to manufacturers
- Comprehensive lighting studies demand advanced modeling capabilities
 - Lighting components are great candidates for Multiphysics simulations



Headlamp Modeling Challenges

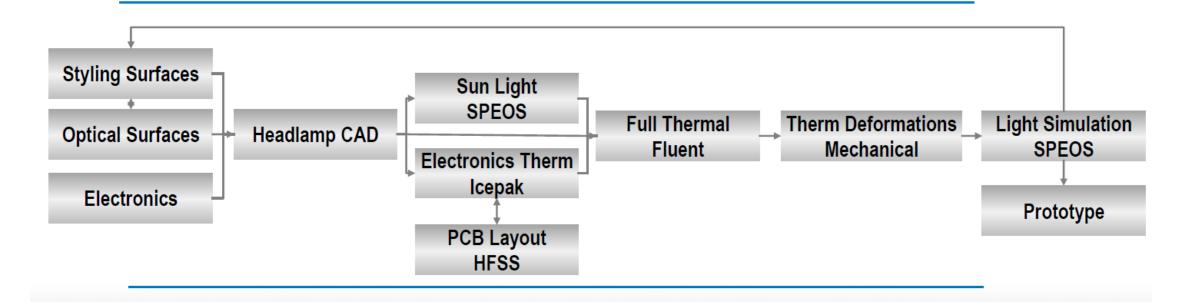

- High geometrical complexity, and many components
- For thermal management all heat transfer mechanisms need to be included
 - Convection, Conduction, Radiation Monte Carlo
- Models are large and transient (e.g. adaptive curve light)
- Electronic components that may need to be investigated in detail
- Released heat impacts plastic components which may affect shape and lighting performance
- ANSYS Multi-Physics includes all modeling options needed to perform fast meaningful thermal management simulations for complete headlamps



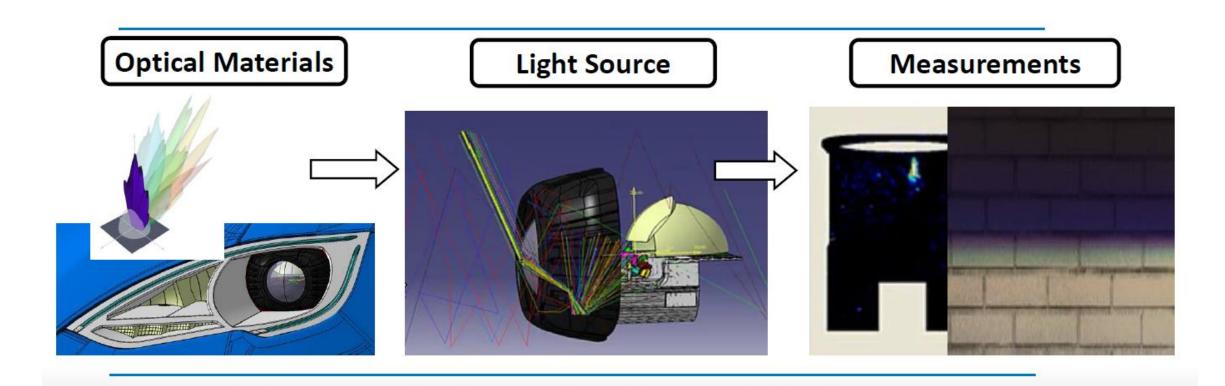

Automotive Headlamp Light Intensity Distribution

Optical Tolerances – Challenging for Lens Design

- Smaller Focal Length means higher cutoff angle tolerances
- LED housings have high tolerances, glaring oncoming traffic is downrating car safety (IIHS testing)
- The lens design needs to be exact (submicron scale)
- Surfaces need to be polished (tolerances in nanometer range)
- Lens material needs to have highest transparency

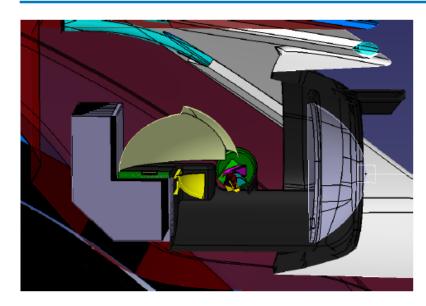

Automotive Headlamp Multiphysics Use Cases

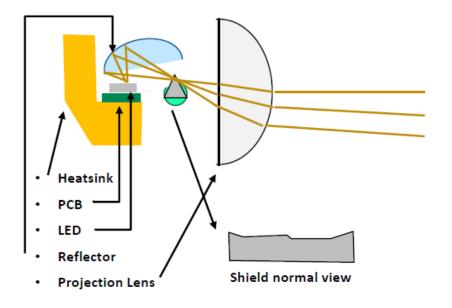
Ideas for robust design concepts


ANSYS Multi-Physics Overall Workflow

- ANSYS SPEOS will simulate the effect of sunlight on the headlamp and provide irradiation maps to Fluent
- ANSYS Icepak will model electronics components in detail and provide PCB Thermal conductivities to Fluent
- ANSYS Fluent will model the full headlamp assembly and provide thermal field to Mechanical.
- ANSYS Mechanical will verify the structural integrity and predict thermal deformations.
- ANSYS SPEOS will test the headlamp for optical performance after thermal deformation.

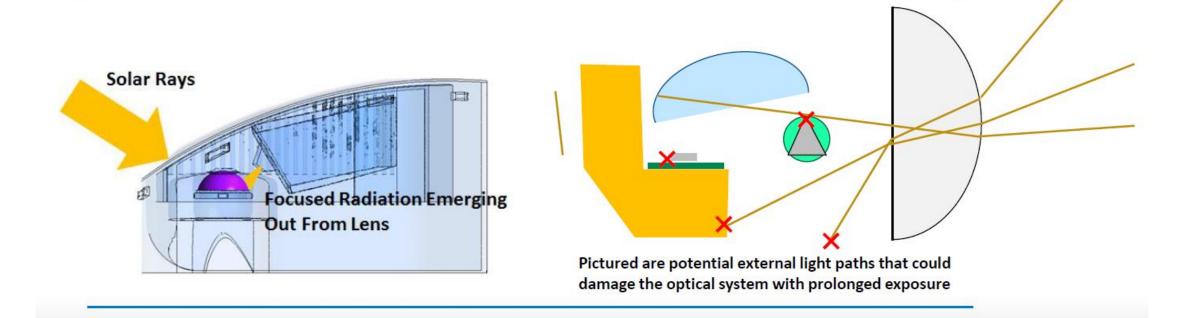
ANSYS SPEOS Workflow


- Original geometry is provided as CAD files.
- · Optical interactions for surfaces and solids defined via measured data
- Light sources correlated with real sources such as LEDs and natural light
- Measurements can be performed for sunburn or colorimetric separation

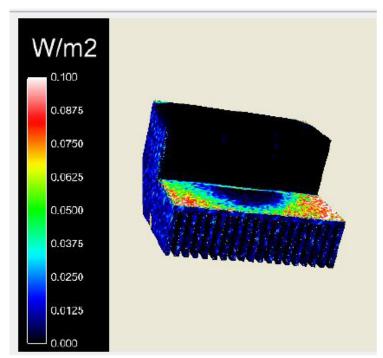

Projection Headlamp

Typical projection lamp system overview

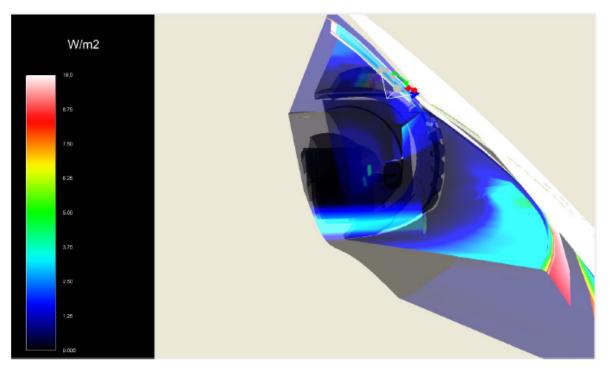
- Light begins at the LED and in the diagram below,
 - Reflects across various points of the reflector
 - Is shaped by the shield (typically rotates, but in this case example would be for low beam with cutoff)
 - Passes through the projection lens and any outer lens


Example cross section of projection headlamp

Sunlight Effects in a Headlamp

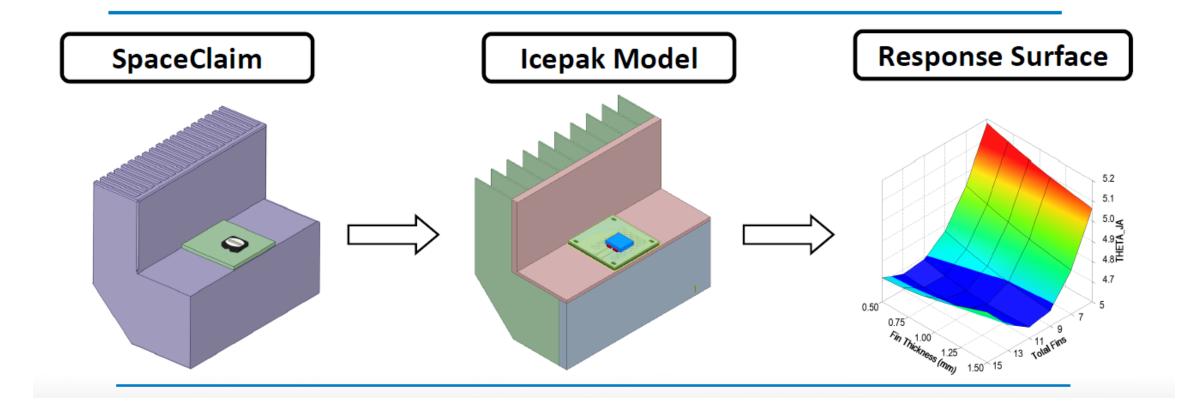

Sunburn - Sun Path Entry Concept

- · Directional high energy light from direct sunlight enters the optical system
- · With few protective features, this added energy can strain the current system
- May result in components changing on a level that would affect optical performance
 - Warping, affecting geometrical tolerances for a sensitive optical system
 - Colorimetric changes for plastic, such as yellowing if PMMA is used in the system

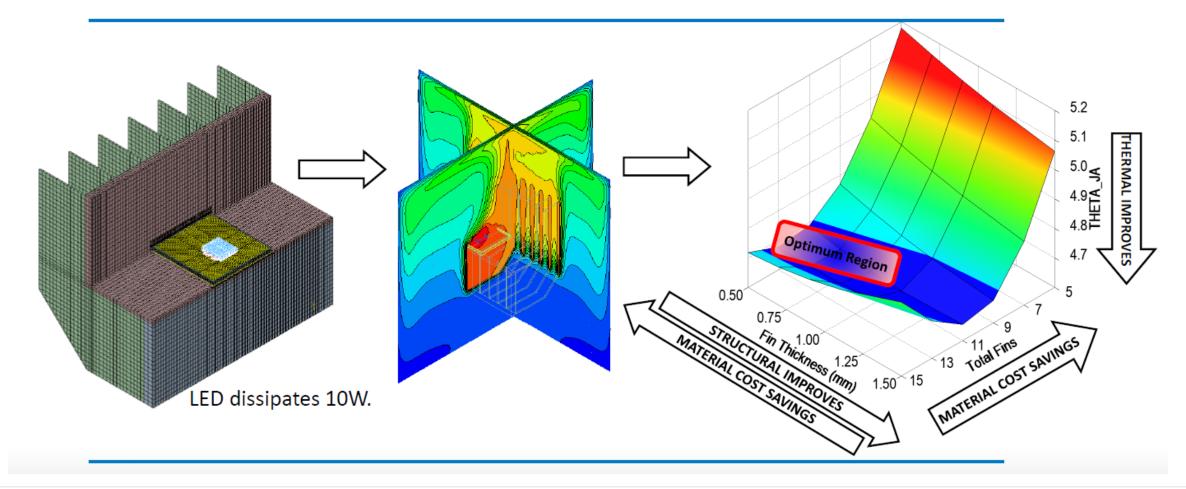


ANSYS SPEOS – Solar Load Analysis

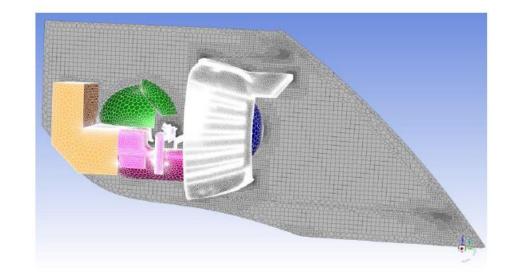
- · Solar light simulations have been conducted
- Irradiation maps for solar loads at different times of the day are created as input for the ANSYS Fluent simulation

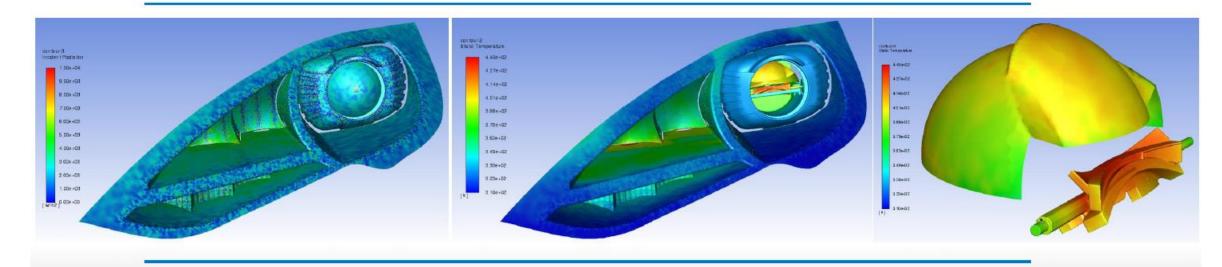

Component level analysis radiometric quantities on heatsink

Cross section of radiometry of entire optical system

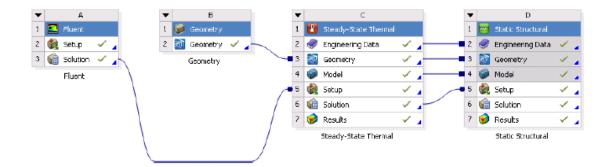

ANSYS Icepak Workflow

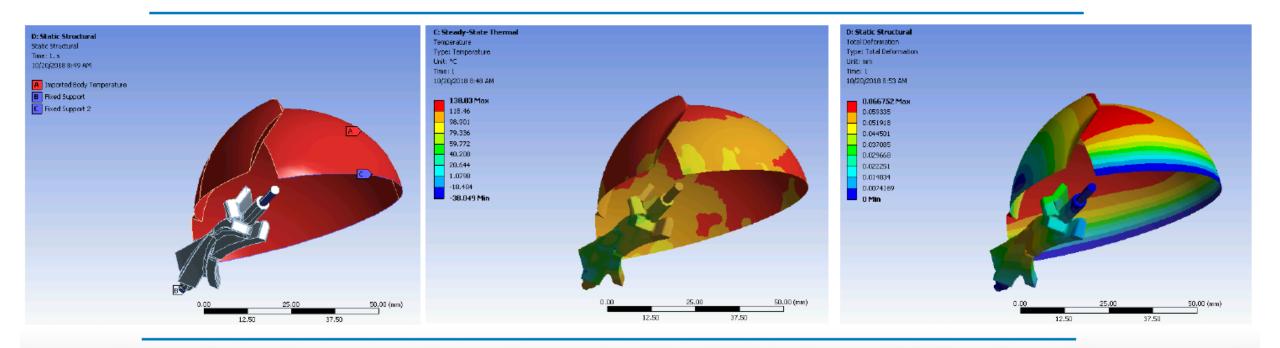
- CFD model was built using ANSYS Icepak in Electronics Desktop.
- A heatsink optimization was performed
- Three PCB layouts with thermal vias were created using ANSYS HFSS 3D Layout.


ANSYS Icepak Heatsink optimization

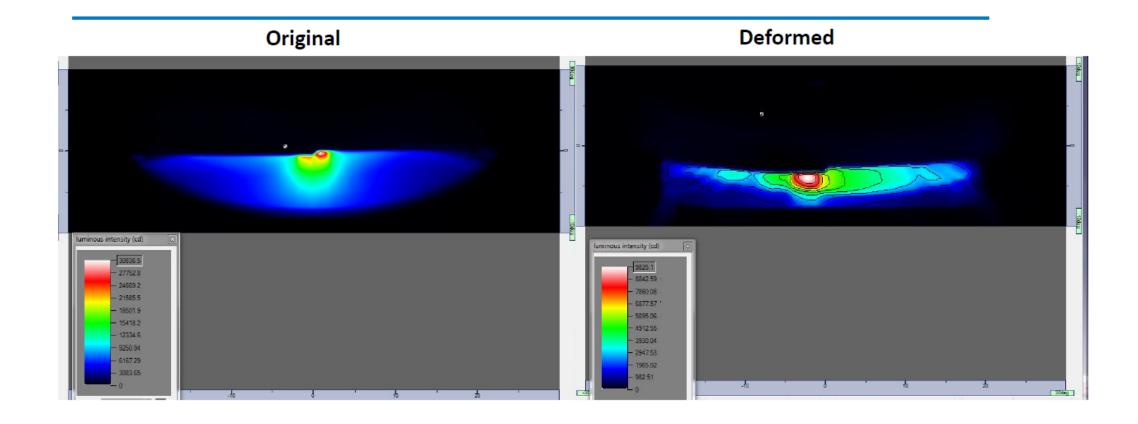

- The heatsink geometry was optimized using Optimetrics Analysis in ANSYS Electronics Desktop.
- The best balance of thermal, structural, and cost performance was chosen.

ANSYS Fluent Analysis


- Watertight CAD workflow in Fluent Meshing was used to create a Poly-Hexcore mesh for the Headlamp CAD with Baffles
- Irradiation Map from SPEOS for Solar Load and Orthotropic Conductivity Field from Icepak for PCB
- Conjugate Heat transfer Simulations were performed in conjunction with the Monte Carlo Radiation Model



ANSYS Mechanical – Thermal Deformation


- Temperatures on the surface are mapped using WB
- · Solved temperature field for steady state thermal analysis
- Performed static structural analysis using fixed support on the Reflector and Shield
- Deformation of the reflector and shield are exported as geometry in STL format

ANSYS SPEOS – Lighting Performance

- ANSYS SPEOS can compare the lighting performance of original and deformed/modified headlamp
 - Luminous Intensity can drastically change with deformed shield and reflector

ANSYS SPEOS – Lighting Performance

- ANSYS SPEOS can compare the lighting performance of original and deformed/modified headlamp
 - Luminous Intensity can drastically change with deformed shield and reflector
 - Deformations will affect pass/fail conditions of the headlamp per regulations

5	Area	Measure	Value	Rule	Test	Target
3	B50L	Average	231.857 cd	850L_1 (passed)		50 [50]
		Average	231.857 cd	BSOL_2 (passed)	4±	350 [350]
	HV	Average	453,406 cd	HV_1 (passed)	>=	50 [50]
		Average	453,406 cd	HV_2 (passed)	4=	625 [625]
	BR	Average	291.317 cd	BR_1 (passed)	2=	50 [50]
		Average	291.317 cd	BR_2 (passed)	4=	1750 [1750]
	BRR	Minimum	295,959 cd	BRR_1 (passed)	>=	50 [50]
		Maximum	955.916 cd	BRR_2 (passed)	<=	3550 [3550]
	BLL	Minimum	102,037 cd	BLL_1 (pessed)	>=	50 [50]
		Maximum	159.955 cd	BLL_2 (passed)	K±	625 [625]
	P	Äverage	144.234 cd	P (passed)	>=	63 (63)
	50R	Average	19003.5 cd			
	75R	Average	20019.2 cd	75R (passed)	>=	10100 [10100]
	50V	Average	20033.8 cd	50V (passed)	>=	5100 (5100)
	50L	Average	10376.2 cd	50L_1 (passed)	2=	3550 [3550]
		Average	10376.2 cd	50L_2 (passed)	ć=	13200 [13200]
	25LL	Average	4307.02 cd	25LL (passed)	De-	1180 [1180]
	25RR	Average	4245.4 cd	25RR (passed)	>=	1190 [1190]
	Segment_20below	Flux				
	Segment_10below	Maximum	11507 cd	Segment_10_below (passed)	K±	12300 [12300]
	S50LL	Average	285.272 cd			
	SS0RR	Average	177.443 cd			
	\$50	Average	119.292 cd			
				\$50_Sum=582.007	=	SSO.Average+SSOLL.Average+SSORR.Average
				S50_Lines (passed)	=	550_Sum>=190
	S100LL	Average	248,44 cd	S100LL		
	\$100RR:	Average	244,612 cd			
	\$100	Average	203.104 cd			
				\$100_Sum=696.157	=	S100.Average+S100LL.Average+S100RR.Aver
				SLOO_Lines (passed)	=	\$100_Sum> =375
	Zone_3a_1	Maximum	285,978 cd	Zone_3a_1 (passed)	<=	625 [625]
	Zone_3a_2	Maximum	299.915 cd	Zone_3a_2 (passed)	45	625 [625]
	Zone_3a_3	Maximum	295,588 cd	Zone_3a_3 (passed)	4=	625 [625]
	Zone_3a_4	Maximum	372,305 cd	Zone_3a_4 (passed)	4±	625 [625]
	Zone_3a_5	Maximum	309,901 cd	(passed) گرهZone کره	<=	025 [025]
	lmax	Maximum	30490 cd	lmax_1 (passed)	>=	16900 [16900]
		Maximum	30490 cd	Imax_2 (passed)	4=	44100 [44100]

					-	
S	Area	Measure	Value	Rule	Test	Target
	B50L	Average	87.985 cd	850L_1 (passed)	>=	50 (50)
		Average	87.985 cd	B50L_2 (passed)	KE	350 [350]
	HV	Average	111.967 cd	HV_1 (passed)	>=	50 [50]
		Average	111.967 cd	HV_2 (passed)	4=	625 [625]
	BR	Average	97,6668 cd	BR_1 (passed)	ÞΞ	50 (50)
		Average	97.6668 cd	BR_2 (passed)	Ke	1750 [1750]
	BRR	Minimum	135.218 cd	BRR_1 (pacced)	2.0	50 [50]
		Maximum	225.679 cd	BRR_2 (passed)	4.0	2550 (3550)
	BLL	Minimum	76.9394 cd	BLL_1 (passed)	ÞΞ	50 (50)
		Meximum	142.45 cd	BLL_2 (passed)	Ka	625 [625]
	p	Average	59.9775 cd	P (failed)	2.5	68 [68]
	50R	Average	142.075 cd			
	75R	Average	129.883 cd	75R (failed)	>=	10100 [10100]
8	50V	Average	104.059 cd	50V (failed)	ÞΞ	51.00 (51.00)
	50L	Average	44.5126 ed	50L_1 (failed)	ÞΞ	3550 [3550]
		Average	44,5125 cd	50L_Z (passed)	50	13200 [13200]
	25LL	Average	115.339 cd	25LL (failed)	>=	1180 [1190]
	25RR	Average	222.248 cd	25RR (failed)	ÞΞ	1180 (1180)
	Segment_20_below	Flux				
	Segment_10_below	Maximum	9805.84 cd	Segment_10below (passed)	45	12300 [12300]
3	SSOLL	Average	11.4975 cd			
	S50RR	Average	20,0625 cd			
3	550	Average	12,5656 cd			
				S50_Sum=44.5257	=	SSO.Average+SSOLL.Average+SSORR.Average
				\$50_Lines (failed)	=	550_Sum>=190
8	S100LL	Average	70.9654 cd	\$100LL		
	S100RR	Average	65.7287 cd			
	00.12	Average	71.6500 cd			
				\$100_Sum=208.374	=	SI00 Average+S100LLAverage+S100RR.Average
				S100_Lines (failed)	-	\$1.00_Sum> = 375
	Zone_3a_1	Maximum	96,0092 cd	Zone_3a_1 (passed)	4=	625 (625)
ī	Zone_3a_2	Maximum	114.841 cd	Zone_3a_2 (passed)	44	625 [625]
	Zone_3a_3	Maximum	84,0893 cd	Zone_3a_3 (passed)	Ke	625 [625]
	Zone_Ba_4	Maximum	113.581 cd	Zone_3a_4 (passed)	50	625 [625]
i	Zone_3a_5	Maximum	93.3251. cd	Zone_3a_5 (passed)	Ca.	625 [625]
	lmax	Maximum	163.037 cd	[max_1 (failed)	>=	16900 [16900]
		Maximum	163.037 ed	Imax 2 (passed)	40	44100 [44100]

Deformed

Thank You for your Attendance – Q&A

Summary:

- Glaring of oncoming traffic is safety critical ANSYS physics based simulations helps to optimize lighting systems
- In principle there is only one physics every system is influenced by all physics, also lighting by thermal and mechanics
- ANSYS SPEOS is integrated in ANSYS workbench Multiphysics Simulation are possible
- The use of optiSLang from Dynardo helps to reduce the simulation effort and to automate the robust design optimization

