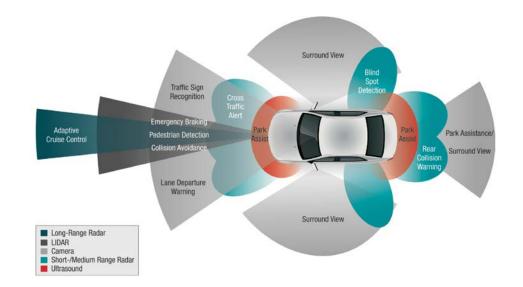


presented at the 17th Weimar Optimization and Stochastic Days 2020 | Source: www.dynardo.de/en/library

Zemax

Robust Design of a Camera Sensor for ADAS and Autonomous Vehicles

Speaker


Sanjay Gangadhara

Chief Technology Officer, Zemax

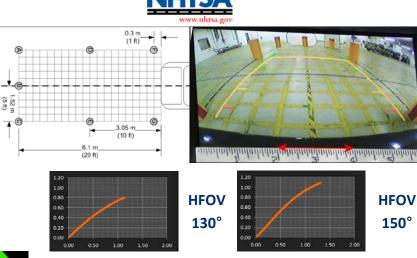
Tasked with identifying new technology that increases the functionality and capability of all Zemax software solutions, Sanjay leads a crossfunctional team of product managers, computational physicists, and software development engineers. His background in general physics, electromagnetism, and optical system diagnostics has served him well in his various roles at Zemax, including optical scientist, senior analyst, director of research and development, and now CTO.

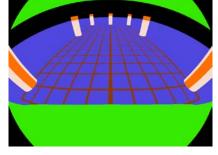
Requirements for ADAS and the role of camera sensors

- International standards for autonomous driving range from full driver control (level 0) to fully autonomous (level 5)
- Visible camera systems are an important part of the sensor ecosystem required for level 5 autonomy
- Such systems generally require robust performance over a wide field-of-view

Source: <u>https://www.embedded-vision.com/sites/default/files/technical-articles/Texas_Instruments_spry260/Figure1.png</u>

Designing Wide-Angle Lens Systems for ADAS

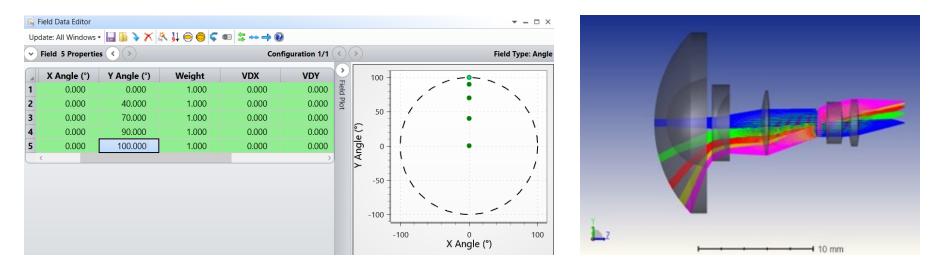

- Wide-angle lens systems used for ADAS/AV need to provide high visual acuity over a large field-of-view (FOV) and over the full visible spectrum
- Performance measured using spot size, distortion, MTF


Source: https://www.digitalphotomentor.com/photography/ 2015/05/wide-angle-lenses-750px-10.jpg

Use Case: Rear Visibility

 Virtually validate automotive rearview image against the Federal Motor Vehicle Safety Standard 111 (FMVSS111) of the National Highway Traffic Safety Administration (NHTSA)

3D model


Camera view

Stripe of F visible	false
Stripe of G visible	false
A detected	true
B detected	true
C detected	true
D detected	true
E detected	true
Average visual angle test	true
Average visual angle	21.87
Visual angle A test	true
Visual angle A	23.51
Visual angle B test	true
Visual angle B	21.05
Visual angle C test	true
Visual angle C	21.05
NHTSA FMVSS111 - Rearview image testin	false

Stripe of F visible	true
Stripe of G visible	true
A detected	true
B detected	true
C detected	true
D detected	true
E detected	true
Average visual angle test	true
Average visual angle	15.05
Visual angle A test	true
Visual angle A	16.23
Visual angle B test	true
Visual angle B	15.05
Visual angle C test	true
Visual angle C	13.87
NHTSA FMVSS111 - Rearview image testin	true

OpticStudio Model

- Wide-angle systems can be designed in the sequential mode of OpticStudio
 - Use Angle for the Field definition
- Designs generally require the first lens to be a large spherical (or aspheric) meniscus lens (i.e. a lens with small, positive radii of curvature on the front and back surfaces)

Nominal System Design Performance

- Accurate modeling requires use of Ray Aiming
- Nominal system shows good performance over FOV and wavelength range

OpticStudio Parameterization

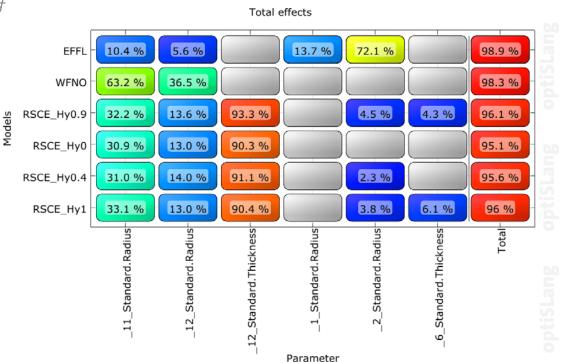
- Use Ansys optiSLang to investigate design sensitivity to:
 - Curvature of the front and back lenses
 - Position of the aperture stop and detector

Values varied within a range of 200/													Optimization		
V	alues varied within a range of 20%														
Charl .	Lens Data odate: Editors Only + ⑦ ⑦ + ● Ⅲ ½ ½ ♥ ⇒ ⊕ ○ - ≤ ፍ ● □ \$ ++ → ●														
\frown	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
	Surfac	е Туре	Comment	Radius	Thickness	Material	Coating	Semi-Diameter	Chip Zone	Mech Semi-Dia	Conic	TCE x 1E-6			
0	OBJECT	Standard •		Infinity	Infinity			Uninity U	0,000	Infinity U	0,000	0,000			
1	(aper)	Standard 🔻		11,201 V	1,033	TAFD35		7,815 U	0,000	7,815 U	0,000	-			
2	(aper)	Standard 🔻		3,946 V	4,132			3,927 U	0,000	7,815 U	0,000	0,000			
3	(aper)	Standard 🔻		-34,626	0,207	TAF5		3,310 U	0,000	3,310 U	0,000	-			
4	(aper)	Standard 🔻		3,449	3,873			2,623 U	0,000	3,310 U	0,000	0,000			
5	(aper)	Standard 🕶		9,635	0,826	5 ⊢58		2,803 U	0,000	2,803 U	0,000	-			
6	(aper)	Standard •		-21,624	4,132 V			2,777 U	0,000	2,803 U	0,000	0,000			
7	STOP (aper)	Standard •		Infinity	0,647			1,180 U	0,000	1,180 U	0,000	0,000			
8	(aper)	Standard •		9,208	0,683	H-LAK52		1,541 U	0,000	1,828 U	0,000	-			
9	(aper)	Standard 🔻		-2,422	0,921	SF58		1,541 U	0,000	1,828 U	0,000	-			
10	(aper)	Standard •		-8,600	0,413			1,828 U	0,000	1,828 U	0,000	0,000			
11	(aper)	Standard •		8,800 V	0,984	C41-60		2,025 U	0,000	2,049 U	0,000	-			
12	(aper)	Standard 🔻		-11,427 V	3,897 V			2,049 U	0,000	2,049 U	0,000	0,000			
13	IMAGE	Standard •		Infinity	-			1,855	0,000	1,855	0,000	0,000			

Pi	arameter	Start designs	Criteria	Adap	tion	MOP	Ot	her	Res	ult designs				
	Name		Paramete	Reference value		Constant		Value type	Resolution	Ra	Range plot			
1 _11_Standard.Radius			Optimizat	ion	8.80018				REAL	Continuous	7.04014	10.5602		
2	_12_Stand	dard.Radius	Optimizat	ion	-11.4	269				REAL	Continuous	-13.7123	-9.14152	
3	_12_Stand	dard.Thickness	Optimizat	ion	3.896	i83				REAL	Continuous	3.11746	4.6762	
4	_1_Standa	ard.Radius	Optimizat	ion	11.20)11				REAL	Continuous	8.96088	13.4413	
	_2_Standa	ard.Radius	Optimizat	ion	3.945	i98				REAL	Continuous	3.15678	4.73518	
6	_6_Standa	ard.Thickness	Optimizat	ion	4.132	2				REAL	Continuous	3.3056	4.9584	

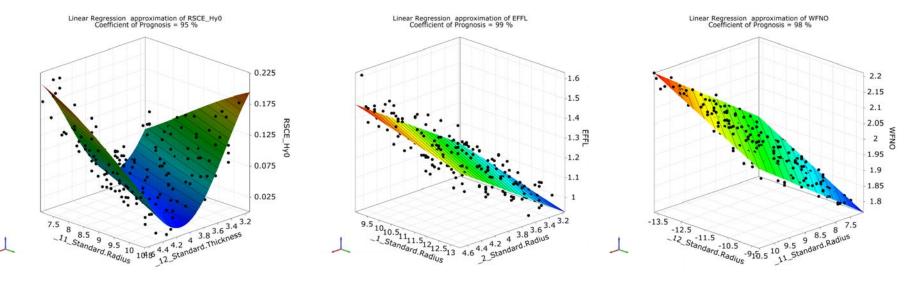
OpticStudio Figures of Merit

- The following Merit Function operands are used by Ansys optiSLang for analysis:
 - EFFL: Effective Focal Length
 - WFNO: Working F/#
 - RSCE: RMS spot radius with respect to the centroid
 - GMTA: Geometric MTF (average of sagittal and tangential)

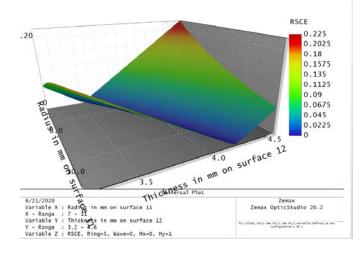

	Merit Function Editor													
2	$\ddagger \bigcirc 2 \times X \Rightarrow \bigcirc 2 \Rightarrow \leftrightarrow \Rightarrow \bigcirc$													
•	✓ Wizards and Operands < > Merit Function: 0,00107211320256246													
	Туре	Samp	Wave	Field	Freq	!Scl	Grid		Target	Weight	Value	% Contrib		
1	EFFL 🔻		2						1,200	1,000	1,200	6,567E-04		
2	WFNO 🕶								2,000	1,000	2,000	0,016		
3	RSCE 🕶	5	0	0,000	0,000				0,000	1,000	9,011E-04	11,773		
4	RSCE 🔻	5	0	0,000	0,400				0,000	1,000	1,554E-03	35,031		
5	RSCE 🕶	5	0	0,000	0,900				0,000	1,000	1,236E-03	22,161		
6	RSCE 🔻	5	0	0,000	1,000				0,000	1,000	1,463E-03	31,018		
7	GMTA 🕶	2	0	1	30,000	0	0		0,000	0,000	0,949	0,000		
8	GMTA 🕶	2	0	1	50,000	0	0		0,000	0,000	0,908	0,000		
9	GMTA 🕶	2	0	5	30,000	0	0		0,000	0,000	0,938	0,000		
10	GMTA 🕶	3	0	5	50,000	0	0		0,000	0,000	0,879	0,000		

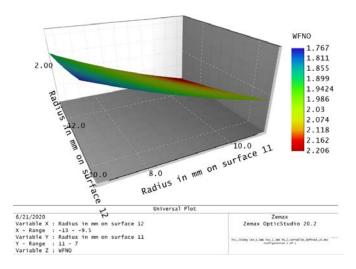
		Responses					
Name	Value	Name	Value				
1_Standard.Radius	8.80018	EFFL	1.19999				
2_Standard.Radius	-11.4269	GMTA_F1_Freq30	0.94907				
Standard.Thickness	3.89683	GMTA_F1_Freq50	0.908211				
_Standard.Radius	11.2011	GMTA_F5_Freq30	0.937941				
_Standard.Radius	3.94598	GMTA_F5_Freq50	0.879019				
Standard. Thickness	4.132	RSCE_Hy0	0.000901079				
		RSCE_Hy0.4	0.00155433				
_ /		RSCE_Hy0.9	0.00123625				
		RSCE_Hy1	0.0014626				
		WENO	2.00003				

Parameter


optiSLang Sensitivity Analysis – CoP Matrix

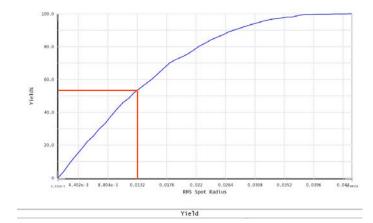
- Effective Focal Length, Working F/# and RMS Spot Radius achieve very high model accuracy
 - CoP > 90%
- Model accuracy is poor for Geometric MTF
 - Rapid degradation of performance with parameter changes


optiSLang Sensitivity Analysis – MOP

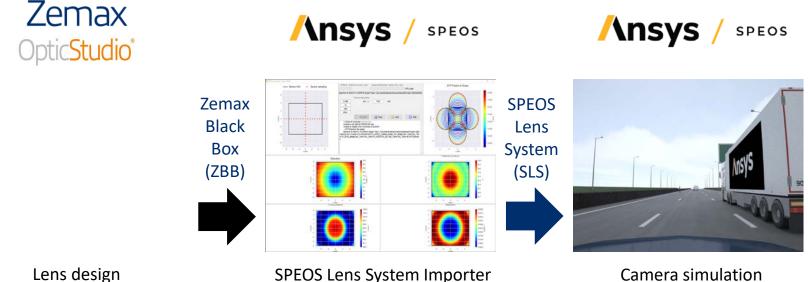

- Post-processing shows a 3D-subspace-plot of the approximation function depending on the two most important parameters
- Spot Radius (RSCE) increases quadratically
- Effective Focal Length and Working F/# increase linearly

OpticStudio – Universal Plot

- optiSLang results provide insight into which parameters have the highest impact on system performance
- Variational response confirmed in OpticStudio with the Universal Plot



OpticStudio Tolerance Analysis


- Using data from optiSLang as a guide, a full tolerance analysis is conducted in OpticStudio
 - Use Normal statistics for parameters under variation
- Results confirm highest sensitivity of RMS spot size and Geometric MTF to front surface curvature of last lens and detector position
- Currently see ~50% yield at nominal design performance
 - May need to modify design or tighten tolerances to improve

				Minimum			Maximum	
Туре			Value	Criter	ion Change	Value	Criterion	Change
TRAD	1	0	-0.20000000	0.00138549	0.00011820	0.20000000	0.00128686	1.9565E-05
TRAD	2	0	-0.20000000	0.00411967	0.00285238	0.20000000	0.00384555	0.00257826
TRAD	11	0	-0.20000000	0.00673456	0.00546727	0.20000000	0.00640024	0.00513294
TRAD	12	0	-0.20000000	0.00334076	0.00207347	0.20000000	0.00350450	0.00223720
TTHI	6	6	-0.20000000	0.00415628	0.00288899	0.20000000	0.00400302	0.00273573
TTHI	12	12	-0.20000000	0.03725487	0.03598757	0.20000000	0.03729178	0.03602449
TTHI	12	12	0.20000000	0.03729178	0.03602449			
Type			Value	Criter	ion Change			
ттні	12	12	-0.20000000	0.03725487	0.03598757			
TRAD	11	0	-0.20000000	0.00673456	0.00546727			
TRAD	11	ŏ	0.20000000	0.00640024	0.00513294			
TTHI	6	6	-0.20000000	0.00415628	0.00288899			
	2	õ	-0.20000000	0.00411967	0.00285238			
	6	6	0.20000000	0.00400302	0.00273573			
TRAD TTHI	-	Ő	0.20000000	0.00384555	0.00257826			
TTHI	2				0.00000700			
	2 12	0	0.20000000	0.00350450	0.00223720			

OpticStudio to SPEOS

• Once design of the camera is complete, the model can be moved into Ansys SPEOS for a full model simulation

SPEOS Lens System Importer

Camera simulation

Summary

- Wide-angle lenses play an important role in camera sensors used for ADAS/AV
 - Such lenses can be challenging to design
- Rigorous algorithms in OpticStudio provide baseline design
- optiSLang can be used to investigate key parameters that impact system performance
- Results provide engineers insight into decisions that improve system design and reduce time-to-market