presented at the 17th Weimar Optimization and Stochastic Days 2020 | Source: www.dynardo.de/en/library

Ansys / DYNARDO

Calibration of the GEKO-Turbulence-Model Parameter with optiSLang

Johannes Einzinger

Agenda

Turbulence Modelling at a Glance <u>Generalized k-Omega Model (GEKO)</u>

Parameter Calibration with optiSLang

• Workflow Template for CFX Simulation

Application Example

Backward Facing Step

• ...

Summary

Turbulence Modelling at a Glance

Turbulence

Properties:

- three dimensional
- transient
- multi scale

Macroscopic Effect:

- increased Friction
- increased Heat Transfer
- increased Mixing

• ...

Objective:

Model Macroscopic Effects by RANS fast! robust! accurate?

 $u_i(\vec{x},t) = \underbrace{U_i(\vec{x},t)}_{i} + \underbrace{u_i'(\vec{x},t)}_{i}$ Fluctuation Average

Turbulence - Eddy Viscosity Models

Reynolds Averaged Navier-Stokes (RANS) Equations:

$$\frac{\partial(\overline{U}_{i})}{\partial t} + \frac{\partial(\overline{U}_{j}\overline{U}_{i})}{\partial x_{j}} = -\frac{1}{\rho}\frac{\partial\overline{P}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left[\tau_{ij}^{mol} + \tau_{ij}^{turb}\right]$$

Stokes Stress Tensor:

Reynolds Stress Tensor:

Eddy Viscosity: Model Equations are required for k and ω a huge number of Models has been developed... which one is the best?

$$\tau_{ij}^{mol} = \nu \left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_j}{\partial x_i} \right)$$
$$\tau_{ij}^{turb} \approx \nu_t \left(\frac{\partial \overline{U}_i}{\partial x_j} + \frac{\partial \overline{U}_j}{\partial x_i} \right)$$
$$\nu_t = const \cdot \frac{k}{\omega}$$

Turbulence - Wall Treatment

1000

The Formulation of a **Turbulence Model**

when integrated through the viscous sublayer is a key aspect of turbulence modelling

- defines robustness
- defines accuracy
- can cause undesired pseudotransition

makes or breaks a Turbulence Model

- 4x the same $k \varepsilon$ model with different near wall ٠ treatment
 - ML Menter-Lechner low-Re model
 - EWT Enhanced wall treatment built on 2-Layer formulation
 - GEKO-1 exact transformation of $k \cdot \varepsilon$ to $k \cdot \omega$ with $k \cdot \omega$ wall treatment
 - V2F k- ε model with V2F 'elliptic blending' wall treatment
- Results are vastly different ٠

Motivation GEKO Model

- Two-Equation Models are the Work-Horse in industrial CFD
- They have typically 5 Coefficients which can be calibrated to match Physics

They are calibrated for

- Flat Plate Boundary Layers (log-Layer)
- Selected free Shear Flows (plane Mixing Layer, Plane Jet)
- Decaying Turbulence in Freestream

Central Question: Can we do such a simulation with one set of global constants?

Probably not ...

GEKO Model: Introducing Free Coefficients

Model Equations for Turbulent Kinetic Energy k and Dissipation ω :

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho U_j k)}{\partial x_j} = P_k - \rho C_\mu k\omega + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] \qquad \qquad \nu_t = \frac{k}{\max(\omega, S/C_{\text{Re}\,al})}$$
$$\frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho U_j \omega)}{\partial x_j} = C_{\omega 1} F_1 \frac{\omega}{k} P_k - C_{\omega 2} F_2 \rho \omega^2 + F_3 \frac{2}{\sigma_\omega} \frac{\rho}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} + \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right]$$

The functions F_1 , F_2 , and F_3 are <u>not</u> constant for *GEKO Model*, they contain free Coefficients:

- C_{SEP} changes separation behavior
- C_{MIX} changes spreading rates of free shear flows
- C_{NW} changes near-wall behavior
- C_{JET} optimizes free jet flows
- C_{CORNER} affects corner flows

GEKO Coefficients can be varied without loosing the fundamental Correlations!

→ Model Calibration wrt to Experiment possible

Workflow optiSLang CFX – Template – Input

Martine 1	Parameter		42	Text Input
	CornerCoefficient	0	Abaukate path	0./data/initiang/PreSaries/WOST2020/GEK0_DLS/Backward_Pacing_Step/CPX_REF/GEK0.cd
1	etCoefficient	0.9	Sitality values	
5.	VixingCoefficient	0.3	Street, Street, Acts	hysta -
151	NearWallCoefficient	0.5	TURSTLEN	tau 12. Meralia
n 5	leparationCoefficient	1.2	5	
		_		-Mixing Confirment - 222 4-0.007 2111 / 11.0 -4
	Filo		14	And a second sec
	ine,		12	
arsed for	GFKO		34 . 1903 35 mm	
	ULINU			
De ve ve	tor			

GE	KO.ccl 🔀	
1	FLOW:	Flow Analysis
2	DOM2	AIN: fluid
3	FI	LUID MODELS:
4		TURBULENCE MODEL:
5		Option = GEKO
6		Separation Coefficient = 1.75
7		Mixing Coefficient = 0.3
8		#
9		Near Wall Coefficient = 0.5
10		Jet Coefficient = 0.9
11		Corner Coefficient = 0.0
12		END CEV CCL Crainwast
13	El	ND CFX-CCL-Snippet
14	END	Linked to Solver at Start
15	END	

Workflow optiSLang CFX – Template – Solver

Workflow optiSLang CFX – Template – Signals

	876	ar.	Variables	=		Festion	409 ()
ADT. IFAN	Card separat	0 R.07, 57.00	31, 452, CH	12171	*	0.098	111384
Andrew Street, Str.	10 S. 1 Pe	hand Provid Date	i da ner i niot	9 100 0	1	0.00.4	13.991
124					2	Ol, daite	1.19402
The second second	-				1	Clasp.	13.99
Surret.					-	54.CH0	11156
1.14177+44	HIGH BORDSHIP	-01			1	\$1,070,14	e (92)
# -0.000#TES	De-UR, 8, 1803377	10-10.0 Tarrel 0				SA, defail	0.85964
- (A 100-001)	De De Laboration	la-63			1	31.005	[92])
Transform	and a second	8.0			10	Output : Standard cto	dota 16
V the one F Decision	C interesting				1	Ovlput Danitard clo	dola IL
Y the ofe P Decider	internation activations		et madation - (in 1			Output : Standard clo	dota 11
			et mutuation i i i i i i i i i i i i i i i i i i	a second		Oxtput	608 15

Read Signals: Velocity Distributions Friction Coefficient Stanton Number CFD Simulation and Experiment Calculate Difference of Curves

Workflow optiSLang CFX – Template – Output

Parse Scaler Output Parameter Maximum Residual and Iteration Number, to check convergence for all Design Points

Test Case: Backward Facing Step

2D Test Case with Recirculation Inlet:

- Velocity Profile
- k-ω Profile
- constant Temperature
 Outlet:
- constant Pressure
 Fluid:
- incompressible
 Reynolds Number = 10⁵
 Reference Turbulence Modell
- SST

Output:

- Wall Friction Coefficient
- Wall Heat Transfer Coefficient

Sensitivity Study – 200 Samples

Meta Model of Optimal Prognosis

Good CoP for both Delta Sim vs Exp

Input Parameter:

C-Separation: dominating Parameter C-Mixing: important C-Near-Wall: important C-Jet: filtered out C-Corner: filtered out

> Next Step: Optimization on Meta-Model CFX Calculation for Optimum Objective Function:

Optimization on Meta Model

	CoP [%]	Reference	Expert	MoP Prediction	CFX Simulation	Rel. Error [%]
Cf-Delta	97.2	1.228	1.221	1.303	1.293	0.54
St-Delta	88.2	0.969	0.713	0.782	0.754	3.71
OBJ: (Cf+St) = min	-	2.197	1.934	2.082	2.047	1.71

Result Comparison – Wall Friction

Reference GEKO by Expert GEKO by optiSLang Experiment

Result Comparison – Wall Heat Transfer

Reference GEKO by Expert GEKO by optiSLang Experiment

Result Comparison – GEKO Parameter

GEKO Parameter	Expert	optiSLang	min	max
Separation Coefficient	1.75	1.937	0.9	2.3
Mixing Coefficient	0.3	0.3925	0.15	0.95
Near Wall Coefficient	0.5	0.3603	-1.25	1.25
Jet Coefficient	0.9	0.9	0.0	1.0
Corner Coefficient	1.0	0.0	0.0	1.5

Result Comparison – C_{Mix} Correlation

GEKO_Model_Best_Practice_V1.0.pdf: For each value of C_{SEP} an optimal value of C_{MIX} exists, which maintains optimal free shear flows. This value is given by the correlation:

$$C_{Mix,Corr} = 0.35 \cdot sign(C_{Sep} - 1) \sqrt{|C_{Sep} - 1|}$$

Summary

Generic GEKO Parameter Calibration Template for CFX is generated

Note: other Objective Functions are possible!