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Motivation

https://www.wieland-thermalsolutions.com/de/rippenrohre/hochleistungsrohre

United States Patent No. 7,509,828 B2
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Motivation
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force-displacement curve of notched tensile specimen

Simulations based on material models from literature do not fit the experiments.
A manufacturer-specific flow curve needs to be created to make predictions with FEM. 

Experiment

Johnson-Cook
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Environment

LS-DYNA R11, GISSMO specimen geometry

Optislang,
Statistics on Structures
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Important Basics

Engineering Curve
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True plastic Curve

σTrue = σEng ∙ (1 + εEng)

εTrue = ln(1 + εEng)

εTrue,pl = εTrue −
σEng
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Important Basics

We eliminate two variables so c1 continuity is preserved.
I prefer Hockett-Sherby because the two remaining variables offer great flexibility.

• Swift 𝜎𝑇𝑟𝑢𝑒 = 𝐾(𝜀0 + 𝜀𝑝𝑙)
𝑛

• Voce 𝜎𝑇𝑟𝑢𝑒 = 𝐴 − 𝐵 ∙ 𝑒−𝐶∙𝜀𝑝𝑙

• Hockett-Sherby 𝜎𝑇𝑟𝑢𝑒 = 𝐴 − 𝐵 ∙ 𝑒−𝐶∙𝜀𝑝𝑙
𝑛

• Johnson-Cook 𝜎𝑇𝑟𝑢𝑒 = 𝐴 + 𝐵 ∙ 𝜀𝑝𝑙
𝑛

• And many more!
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Important Basics

Let us just define the total error as the sum of errors for each individual specimen.

This is a simple approach but is a good description if no biasing occurs.

Total Error = Error1 + Error2 + Error3 + Error4
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Important Basics

When undertaking a multi-objective optimization the data needs to be adjusted.
We eliminate inherent data bias by scaling and resampling.
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Important Basics

All of this data processing serves to make our cost-function well-behaved.
Our way of measuring error should be robust so our MOP is accurate with few designs.
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Global Response fit – RMSE

The easiest way to determine the difference between simulation and experiment is the root
mean square error approach. Interpolation is required for this approach to work.
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Global Response fit – RMSE

My error measure describes the optimum perfectly, however the behaviour is not robust and
leads to many local minima which lead to a less than satisfactory optimization result. 
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Global Response fit – Dynamic Time Warping

A great way of measuring the similarity between curves is dynamic time warping.
Originally used in voice recognition it‘s applicable to material science as well.

RMSE

DTW

https://www.cio.com/article/3239924/cios-listen-up-voice-recognition-meets-the-printer.html
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Global Response fit – Dynamic Time Warping

A matrix is produced by the DTW algorithm which pairs individual points of the signals. 
The distance (error) is easily quantified and agrees with my qualitative estimations.

https://www.quora.com/How-do-I-create-a-rm-LaTeX-macro-that-generates-an-m-
times-n-matrix
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Global Response fit - SoS

While the other approaches certainly work, using SoS is far more elegant and all the information
we obtain in our signal can be used to gauge the sensitivity with a F-MOP.

Regular Approach

Smarter Approach

Flowcurve Simulation Signal

Scalar MOP

F-MOPF-MOP
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Global Response fit – Comparison

Judging from just the CoP you would think that RMSE is a better measure.
This is deceptive and not the case, otherwise I would not give this presentation!

RMSE DTW
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Global Response fit – Comparison

Of course, our variable C has a significant impact on the results but due to the large influence of
N our MOP does not capture this. With SoS and its‘ F-MOP, the influence is easily shown.
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Global Response fit – Comparison

The response surface however, tells a very different story. While most of the area with RMSE is
quite flat and kind of useless. With DTW every design provides information.

RMSE DTW
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Global Response fit – Comparison

The response surface however, tells a very different story. While most of the area with RMSE is
quite flat and kind of useless. With DTW every design provides information.

RMSE DTW
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Global Response fit – Comparison

The results become even more apparent if you look at the pareto set.

With DTW we are able to detect our best design easily.

RMSE DTW
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Global Response fit – Comparison

Both flowcurve parameters suggested by the MOPs do not fit the experiment exactly.
However, the suggestion based on the data from DTW is a lot closer.

Experiment

DTW

RMSE
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Global Response fit - Outlook

Thanks to Digital Image Correlation (DIC) we can take a closer look at our „black box“ experiment. 
In the future a fit based on the local reponse with SoS will reduce data loss.
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Summary

Multiple adjustments to the data are necessary to remove bias:

• Normalize axes for all experiments and simulations

• Resample so every signal has the same amount of points

While a good CoP can be reached with these adjustments and RMSE, the MOP obtained is not 
suitable for an optimization.

Dynamic Time Warping is a better description of signal deviation and leads to a „well behaved“ 
MOP. The optimum in this MOP delivers acceptable results on another specimen.
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Sources

• G. Johnson, W. Cook: A constitutive model and data for metals subjected to large strans, 
high strain rates and high temperatures

Proceedings of the Seventh International Symposium on Ballistics, 
1983

• F. Andrade, A. Haufe, M. Feucht, F. Neukamm:
An incremental stress state dependent damage model for ductile
failure prediction

International Journal of Fracture, V200, 2016

• H. Sakoe, S. Chiba : Dynamic programming algorithm optimization for spoken word
recognition

IEEE Trans. Acoustic Speech and Signal Processing, V26, 1978
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