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force-displacement curve of notched tensile specimen
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Simulations based on material models from literature do not fit the experiments.
A manufacturer-specific flow curve needs to be created to make predictions with FEM.
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Important Basics
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Important Basics

* Swift

* Voce

* Hockett-Sherby
* Johnson-Cook

* And many more!

We eliminate two variables so c1 continuity is preserved.
| prefer Hockett-Sherby because the two remaining variables offer great flexibility.
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Total Error = Errorl + Error2 + Error3 + Errord

Important Basics

Let us just define the total error as the sum of errors for each individual specimen.

This is a simple approach but is a good description if no biasing occurs.
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Important Basics Ny

Force

Displacement Displacement

When undertaking a multi-objective optimization the data needs to be adjusted.
We eliminate inherent data bias by scaling and resampling.
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Important Basics S

All of this data processing serves to make our cost-function well-behaved.
Our way of measuring error should be robust so our MOP is accurate with few designs.
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The easiest way to determine the difference between simulation and experiment is the root
mean square error approach. Interpolation is required for this approach to work.
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Global Response fit — RMSE @T“”
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My error measure describes the optimum perfectly, however the behaviour is not robust and
leads to many local minima which lead to a less than satisfactory optimization result.
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Global Response fit — Dynamic Time Warping J))

RMSE

DTW

A great way of measuring the similarity between curves is dynamic time warping.
Originally used in voice recognition it‘s applicable to material science as well.
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Global Response fit — Dynamic Time Warping
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A matrix is produced by the DTW algorithm which pairs individual points of the signals.
The distance (error) is easily quantified and agrees with my qualitative estimations.
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Global Response fit - SoS 5™
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Regular Approach Scalar

Flowcurve . . Signal

A 4

F-MOP F-MOP Smarter Approach

While the other approaches certainly work, using SoS is far more elegant and all the information
we obtain in our signal can be used to gauge the sensitivity with a F-MOP.
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RMSE DTW

Coefficients of Prognosis (using MOP) Coefficic-f'nllis ofé’r?ggogis (gz”;l/g MOP)
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Judging from just the CoP you would think that RMSE is a better measure.
This is deceptive and not the case, otherwise | would not give this presentation!
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Global Response fit — Comparison S) B

Flowcurve_Erweiterung_SoS - Flowcurve_Erweiterung-SoS_chan_0 - F-CoP (%)
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Of course, our variable C has a significant impact on the results but due to the large influence of
N our MOP does not capture this. With SoS and its F-MOP, the influence is easily shown.

o
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Global Response fit — Comparison S

RMSE DTW

Anisotropic Kriging approximation of total_err_euklid
Coefficient of Prognosis = 98 %

Anisotropic Kriging approximation of total_err
Coefficient of Prognosis = 94 %

0 0 1
o] m
.

™M m

wn -

~ ~
u\ ul
[} 1)
b A T -

wn [a]

- -

»
- -
.
L]
n n
o o
.
s
0.25 0.5 0.75 1 1.25 1.5 1.75 0.25 1.25 1.5

HS_N

The response surface however, tells a very different story. While most of the area with RMSE is
quite flat and kind of useless. With DTW every design provides information.
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Global Response fit — Comparison K(S';THU

RMSE DTW

Anisotropic Kriging approximation of total_err_euklid Anisotropic Kriging approximation of total_err
Coefficient of Prognosis = 98 % Coefficient of Prognosis = 94 %
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The response surface however, tells a very different story. While most of the area with RMSE is
quite flat and kind of useless. With DTW every design provides information.
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Global Response fit — Comparison @’”%T"'”
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The results become even more apparent if you look at the pareto set.

With DTW we are able to detect our best design easily.
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Both flowcurve parameters suggested by the MOPs do not fit the experiment exactly.
However, the suggestion based on the data from DTW is a lot closer.
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Thickness Reduction- based on initial geometry
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Thanks to Digital Image Correlatlon (DIC) we can take a closer look at our ,black box“ experiment.
In the future a fit based on the local reponse with SoS will reduce data loss.
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Summary S

Multiple adjustments to the data are necessary to remove bias:

* Normalize axes for all experiments and simulations

* Resample so every signal has the same amount of points

While a good CoP can be reached with these adjustments and RMSE, the MOP obtained is not
suitable for an optimization.

Dynamic Time Warping is a better description of signal deviation and leads to a ,well behaved”
MOP. The optimum in this MOP delivers acceptable results on another specimen.
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