

Design for Reliability Approach for Ensuring the Solder Joint Reliability of eWLB Packages in Automotive Radar Applications Using ANSYS optiSLang and ANSYS Mechanical

<u>Martin Niessner¹</u>, Walter Hartner¹, Gerhard Haubner¹, Sebastian Pahlke¹, Poland Niemeier², Bernd Buettner², Michael Eichberst³

Roland Niemeier², Bernd Buettner², Michael Eichhorst³

¹Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany

²Dynardo GmbH, Steubenstraße 25, 99423 Weimar, Germany

³Chemnitzer Werkstoffmechanik GmbH, Technologie-Campus 1, 09126 Chemnitz, Germany

17th WeimarJune 25 – 26, 2020Optimization andStochastic Days 2020Virtual Conference

Agenda

- Design for Reliability: Challenges and Motivation
- Results from WOST2019
- Comparison with Measurements
- Simulations for Three Cases and Metamodels of Optimal Prognosis (MOP)
- Reliability Analyses based on MOP
- Conclusion

Design for Reliability: Challenges and Motivation Trends influencing reliability requirements

Courtesy of Ulrich Abelein (Infineon Technologies AG)

Copyright © Infineon Technologies AG 2020. All rights reserved.

2020-06-26

Design for Reliability: Challenges and Motivation **Contributing factors**

Contributing factors:

- > Additional operating states beside driving:
 - On-grid parking
 - Vehicle-Preconditioning (battery as well as driver comfort like cabin heating)
 - Charging

Consequences:

> Increase in operating times

→ Increase in reliability requirements

Design for Reliability: Challenges and Motivation **Requirements based on operating situation**

Table 45: Description General part **Operating situations**

Example requirements

Operating situation	Vehicle parked	Charging cable inserted	High-voltage battery pack	communication	Operating situation	Hours accumulated hours over lifetime
			charging	(if available)	Driving	0.000 k
Driving operation	no	no	yes/no	no	operation	8,000 n
Charging operation	yes	yes	yes	yes	Charging	30.000 h
Preconditioning	yes	yes/no	yes/no	yes/no	operation	
On-grid parking	yes	yes	no	yes	Off-grid	92 000 h
Off-grid parking or	N/OO		no		parking	0 2 ,000 m
parking	yes	10	110	10		

Power line

Operating states for e-vehicles according to LV124

Note: 5,500 h comfort-preconditioning (e.g. heating the cabin) might be estimated although not required as a state in the table.

	<u>Example:</u> Microcontroller for use in a batt	ery charging system	Custome Mission Pr	er's ofile*
Ci Inc	Lifetime (same like vehicle):	15 years	T _{ambient} [°C]	Time [h]
""neon	On Ambient Temp Pange:	-40 °C to 125 °C	Operating	
	Non-operating time.	-40 C to 125 C	125	400
	Non-operating time:	91,400 Hours	120	3,200
	> Operating time:	40,000 nour	76	26,000
			23	8,000
			-40	2,400
			Non Operating	
			85	914
			80	7,312
s today's AEC	-Q100 qualification		60	59,410
overina this I	ifetime requirement?		23	18,280
5			-40	5,484
e details on AEC: <u>http://www.aecouncil.c</u>	<u>com/</u>		*) Arbitrary chosen, correspond Application Questionnaire for E Units and Sensors", ZVEI, Oct	ling to "Automot Electronic Contro ober 2006

Example: AEC-Q100 Rev H: http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf

60

23

-40

*) Arbitrary chosen, corresponding to "Automotive Application Questionnaire for Electronic Control Units and Sensors", ZVEI, October 2006

59.410

18,280

5,484

Equivalent HTSL stress time		Custome Mission Pr	er's ofile*
Assumptions:		T _{ambient} [°C]	Time [h]
Arrhenius Model with $E_a = 0.7 \text{ eV}$, Self heating: 2	0°C	Operating	
Result:		125	400
T _{stress,eq} @175 °C = 1,521 h		120	3,200
$T_{stress,eq}$ @150 °C = 4,437 h		76	26,000
Successed -		23	8,000
AEC-Q100 stress test conditions (Grade 1)	< 30% covorado	-40	2,400
500 hours @ 175 °C or	of extended	Non Operating	
1000 hours @ 150 °C	requirements	85	914
		80	7,312
		60	59,410
		23	18,280
		-40	5,484
		*) Arbitrary chosen, correspon Application Questionnaire for I	ding to "Automotive Electronic Control

Equivalent HTSL stress time		Custome Mission Pr	er's ofile*
Assumptions:		T _{ambient} [°C]	Time [h]
Arrhenius Model with $E_a = 0.7 \text{ eV}$, Self heating: 20	0°C	Operating	
Result:		125	400
T _{stress,eq} @175 °C = 1,521 h		120	3,200
T _{stress.eq} @150 °C = 4,437 h		76	26,000
		23	8,000
AEC-Q100 stress test conditions (Grade 1)		-40	2,400
500 hours @ 175 °C or	of extended	Non Operating	
1000 hours @ 150 °C	requirements	85	914
AFC-0100 stress test conditions (Grade 0)		80	7,312
	~60% coverage	60	59,410
1000 nours @ 175 °C or	of extended	23	18,280
2000 hours @ 150 °C	requirements	-40	5,484
Today's AEC-Q100 qualifications do no	t) Arbitrary chosen, correspon Application Questionnaire for I Jnits and Sensors", ZVEI, Oct	ding to "Automotive Electronic Control ober 2006

cover extended requirements

Investigated application Automotive RADAR

Key findings WOST2019 Solder joint reliability of eWLB radar package

Key findings WOST2019 Solder joint reliability of eWLB radar package

- > Summary of sensitivity study:
 - For low CTE, the RF laminate generates a "CTE transition" between the PCB and the package
 - For low E modulus, the RF laminate becomes a "buffer"

For more details see archive of WOST2019: <u>https://www.dynardo.de/filea</u> <u>dmin/Material_Dynardo/bibli</u> <u>othek/WOST16/4_WOST20</u> <u>19_Session_3_Niessner.pdf</u>

Key findings WOST2019 (continued) **Experimental validation 2019 and 2020**

Infineon

Next steps in WOST2020 Investigation along value chain

- > Experiments show that solder joint reliability is locally reduced when the PCB is no longer free, but mounted in a housing
- Limitation: Suppliers of electrical components can only do testing on free, non-mounted PCBs as module design unknown

Consequence: Delta between Tier2 and Tier1 reliability results

Next steps in WOST2020 Investigation along value chain using MOP

Case	#1	#2	#3
Situation	Tier2 type reliability test	Tier1 type module loading	Tier1 type module loading + cornerbond
Temperature loading	Yes	Yes	Yes
Bending because PCB is fixed to housing	No	Yes	Yes
View of deformation during loading	100x over-scaled	100x over-scaled	100x over-scaled
Top view (half model)			

 MOPs are used for studying the solder joint reliability along the value chain, especially regarding the RF material design space

Next steps in WOST2020 Investigation along value chain using MOP

	Case	#1	#2	#3
	Situation	Tier2 type reliability test	Tier1 type module loading	Tier1 type module loading + cornerbond
	Temperature loading	Yes	Yes	Yes
	Bending because PCB is fixed to housing	No	Yes	Yes
	View of deformation during loading			
	Top view (half model)			
>	MOPs are used for stu RF material design spa	dyinace	abiliter ch	nain,

Copyright © Infineon Technologies AG 2020. All rights reserved.

Reliability Analysis based on MOP

17th Weimar Optimization and Stochastic Days 2020 Virt

June 25 – 26, 2020 Virtual Conference

Reliability and the Probability of Failure

- Optimization is introduced into virtual prototyping for more than 20 years
- Robustness evaluation and reliability analysis are key methodologies for safe, reliable and robust products
- The combination leads to robust design optimization (RDO) strategies

- The complementary of reliability is the probability of failure. This can be computed taking into account the scattering, variations of the input.
- Applications for example in ADAS, Microelectronics, ...:
 - Driving Scenarios
 - Solder Joint Fatigue

Probability of Failure Calculations in Microelectronics

- The complementary of *Reliability* is the *Probability of Failure*
- This can be computed for different failure mechanism, like
 - Solder Joint Fatique (e.g. solder balls)
 - Delamination
 - Interconnect failure (e.g. wire lift-off inside package)
- Total Probability of Failure of the system depends on redundancy, dependencies for example
 - Series system: fails if one single component fails

- Parallel system: fails if all components fail
- Criteria need to be defined for the failure
 - This leads to limit state function(s)
 - Algorithms to detect this limit state function reduce the number of necessary simulation significantly

 $h_{\mathbf{Y}}(\mathbf{x})$

©2020 ANSYS, Inc.

17th WeimarJune 25 – 26, 2020Optimization andVirtual ConferenceStochastic Days 2020Virtual Conference

Metamodel of Optimal Prognosis (MOP)

- Selection of the **important variables** by sensitivity indices
- Determination of **best surrogate model** without overfitting
- Objective measure of **prognosis quality**
- Fast **Optimization** based on MOP
- Fast **Reliability Analysis** based on MOP

Coefficients of Prognosis (using MOP) full model: CoP = 100 %

MOP Surface: Case 3 with b_factor = 1.5; isoline loc1_top = 0.0055

Probability of Failure at a constant damage limit level using uniform distribution across full design space

Limit State Function defined by loc1 top < 0.0055 Reliability Algorithm: Adaptive Sampling

Probability of Failure for whole design space with uniform distribution Case 1: 0,69; Case 2: 0,95; Case 3: 0,60 for Case 3 displayed: Reliability Information, Cloud plot, Result History and Anthill Plot

Probability of Failure as a function of damage limit level using uniform distribution across full design space

Parameter St		tart designs Nomin		al design Criteria		a	Adaptive Sam	Other	Result d	
	Name	Paramete	er type	Reference	e value	PDF	Туре	Dist	ribution p	oarameter
1	b_factor	Stochastic		1		Π	UNIFORM	0; 2		
2	mat_hf_ctex	Stochastic		26.5		Π	UNIFORM	3; 50	il.	
3	mat_hf_ex	Stochastic		17.75		П	UNIFORM	0.5;	35	

Probability of Failure as a function of Damage Limit Level

Higher damages are much more probable in Case 2 than in Case 3

Automated Workflows for Reliability Analyses

- Using Reliability Methods Integrated in Workflows •
- Loop over threshold values to calculate Probability of Failure curves •
- Branches for different cases •
- Data Mining to extract relevant information .

Parameter	Start designs	Criteria	Dyna	amic sampling	Other	Res	ult designs						
	Name	Parameter t	ype	Reference value	e Const	tant	Value type	Resolution	Range	Range plot	PDF	Туре	Distribution p
1 criteria_l	imit_state	Optimization	n	0.003			REAL	Discrete by value	0.00	III I II			
2 b_factor		Stochastic		1			REAL	Continuous				UNIFORM	0; 2

Specific Design Point with a Probability Distribution

- Walking on the unsafe side, Case 2

P	arameter Sta	art designs Nomin	al design Criteria	Adaptiv	e Sampling	Other Re	esult desig	gns						
	Name	Parameter type	Reference value	Constant	Value type	Resolution	Range	Range plot	PDF	Туре	Mean	Std. Dev.	CoV	Distribution pa
1	b_factor	Optimization	1.5	\checkmark	REAL	Continuous	0 2							
2	mat_hf_ctex	Opt.+Stoch.	21		REAL	Continuous	3 50		λ	NORMAL	21	6.3	30 %	21; 6.3
3	mat_hf_ex	Opt.+Stoch.	2		REAL	Continuous	0.5 35		Λ	NORMAL	2	0.6	30 %	2; 0.6
										Complete iteral	10115.57	2		
			40 349 57 58 59 59 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50						F Stan	Selected robability of Fa Jard deviation e Reliability J Number of Safe dor Unsafe dor Failure str Fi	data : All ilure : 0.9 error : 0.0 ndex : -1. f designs Total : 30 main : 14 main : 24 rings : 0 ailed : 39	designs 920722 90766578 40994 5 9 5 5 5		
			40 30 10 10 10 10 10 10 10 10 10 10 10 10 10	Safe domain Unsafe domain	ang optistang optist.	Criteria			F Stan	Selected robability of Fa dard deviation e Reliability II Number of Safe dor Unsafe dor Failure str Fa	data : All ilure : 0.9 error : 0.0 ndex : -1. f designs Total : 30 main : 14 main : 24 ings : 0 ailed : 39	designs 920722 90766578 40994 5 00 9 5 5 5		

Assuming the b_factor of 1.5 in Case 2 we have a design on the unsafe side

Same Design Point with same Probability Distribution - Walking on the safe side, Case 3

Parameter Star	t designs Nominal	design Criteria	Adaptive S	Sampling (Other Resul	lt designs							
Name	Parameter type	Reference value	Constant	Value type	Resolution	Range	Range plot	PDF	Туре	Mean	Std. Dev.	CoV	Distribution paramete
1 b_factor	Optimization	1.5	\checkmark	REAL	Continuous	0 2							
mat_hf_ctex	Opt.+Stoch.	21		REAL	Continuous	3 50		\wedge	NORMAL	21	6.3	30 %	21; 6.3
mat_hf_ex	Opt.+Stoch.	2		REAL	Continuous	0.5 35		A	NORMAL	2	0.6	30 %	2; 0.6
	5.0.3	ANNA ANNA ANNA ANNA ANNA ANNA ANNA ANN	0.006	top					Standard devia Reliab	tion error	: 1.36946e	12	
		Warde.	0.006	5 ²					Reliab	lity Indov		-13	
		19994. 1		50						inty muex	: 6.96354	-13	
			0.004	T : loc1					Numb	er of de	: 6.96354	-13	
			0.004	2 UTPUT : loc1					Numb	er of de Total e domain	: 6.96354 signs : 3000 : 1443	-13	
			0.004	2 0UTPUT : loci					Numb Saf Unsaf	er of de Total e domain e domain	: 6.96354 signs : 3000 : 1443 : 644	-13	
			0.004	2 2 2 2	jLang				Numb Saf Unsaf Failu	per of de Total e domain e domain re strings Failed	: 6.96354 signs : 3000 : 1443 : 644 : 0 : 913	-13	
			0.004 0.002 Safe d	s omain	istang	Criteria			Numb Saf Unsaf Failu	e r of de Total e domain e domain re strings Failed	: 6.96354 signs : 3000 : 1443 : 644 : 0 : 913	-13	
L			0.004 0.002 Safe d Unsafe	s omain e domain	tang	Criteria	Name	Туре	Numb Saf Unsaf Failu Expression	e er of de Total e domain e domain re strings Failed Crite	: 6.96354 signs : 3000 : 1443 : 644 : 0 : 913 rion L	imit	Evaluated expression

Algorithm using MOP detects with only 3000 runs very low probability of failure: 1.7 * 10^{-1}

Examples of Fragility Curves:

Studying the Probability of Failure in dependance of important parameters for a specific design

Probability of Failure as Function of Bending Factor

Specific design with mean E, CTE const.; Gaussian distribution; CoV 10%; bending factor varying from 0 to 2; limit level loc1_top = 0.0055

Conclusions and Outlook

//nsys / dynardo

- Superior reliability using additional corner bonds is shown by the reliability analysis
- The probability of failure has been used in calculations as the complementary of reliability
- This analysis has been done based on MOP as an example for a possible important exchange mechanism between companies
- Efficient workflows are developed using the MOP that can be used for simulation runs to calculate probability of failures based directly from simulation runs (i.e. detailed analysis for transition regions, verification)
- Fragility Curves are useful to understand the design behavior

Future possible research include extension of Fragility Curves to several dimensions: Metamodels of Probabilities of Failures

High quality Metamodels of Probabilities of Failures can be an essential component for Digital Twins

©2020 ANSYS, Inc.

 17th Weimar
 June 25 – 26, 2020

 Optimization and
 Virtual Conference

Thanks !

