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• Case Studies
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• VRX Driving Simulator & optiSLang

•Automatic Controller Calibration with VRX Driving Simulator and optiSLang

• Q&A



Introduction of 
Autonomous Vehicles
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Ansys

Why are Automotive companies (OEM & Supplier) choosing Ansys to 
deliver autonomous & driver assistance technologies?

Single largest 
engineering 

simulation company 
in the world

• Est. 50+ years
• 100+ offices
• 4000+ employees 

(many in R&D & 
Engineering)

• Market leaders 
for ADAS & 
electrification 
simulation

• $23bn market cap
• >$1bn in recent 

acquisitions



Autonomous Vehicles simulation platform view

Environment

Traffic Objects &
Behavior

Motion &
Rendering

Sensor Framework
Ideal, Stochastic, Physics-Based

AV Software

Vehicle Components & Vehicle Dynamics

Perception Motion 
Planning

Motion
Execution

Closed-Loop Simulation

Result Analytics

Confidence &
Reliability AnalysisError Estimation

System & Safety

FuSa, SOTIF

Ansys VRXPERIENCE Driving Simulator

Ansys VRXPERIENCE Sensors

Ansys medini

Scenario Creation

Scenario Creation

Scenario Variation

Scenario Variation

Simulation Orchestration

Range Definition

Statistical Analysis

Ansys optiSLang

System Modeling

World Modeling

World Modeling

Ansys optiSLang
Ansys VRXPERIENCE 

Driving Simulator

Ansys VRXPERIENCE 
Driving Simulator

Ansys SPEOS & HFSS

Ansys SCADE Suite



6

Much wider breadth throughout the V-cycle

MIL or SIL on
Workstation Driver Simulator HPC / Cloud HIL

Preparation (scenario,…)

Quick testing of control 

software (policy) MIL or SIL

Human in the loop testing

AD L2/L3 - Driver take over 

and re-engagement

Situational awareness

Campaign testing against 

Millions of scenarios

Non regression testing

ECU control software testing

Non regression testing

Validation



L2 ADAS
AEB, ACC, LKA…

L3 AD
TJC, HC, …

Automatic 
Parking

Intelligent
Lighting

Fusion

H/W S/W

Actuators

H/W S/W

Sensors

H/W S/W

HMI / HUD

H/W S/W

ADAS function

H/W S/W

GPS

Radar

Camera

Ultrasonic

Lidar

Addresses all aspects of an ADAS system



Developing L3-L4 mainly requires mastering safety challenges
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Moving from L2 to L3-L4 requires a technological quantum leap

Driver

No assistance

Driver is responsible
(Advanced Driver Assistance 

Systems - ADAS)
Driver Only

Hands off

Semi
Automated

Feet off

Assistance

Eyes off

Highly Automated

Mind off

Autonomous

…everywhere

Autonomous

20 1 3 5

(L 0) (L 2)(L 1) (L 3) (L 4) (L 5)

Machine is responsible
(Autonomous Vehicles - AV)
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Image Courtesy: BMW



Case Studies



Ansys - BMW Group
Technology Partnership 

“Ansys And BMW Group Partner To Jointly Create The Industry's First 
Simulation Tool Chain For Autonomous Driving”

New agreement drives development of autonomous driving technology 
for the BMW iNEXT, the next-generation autonomous vehicle
https://www.ansys.com/about-ansys/news-center/06-10-19-ansys-bmw-group-
partner-jointly-create-simulation-tool-chain-autonomous-driving

• Long term agreement
• Level 3 / 4 
• iNext Launch 2021

Ansys will assume exclusive rights to the simulation tool
chain technology for commercialization to a wider market
as part of Ansys Autonomy.

Image source: BMW Press Photos Website

https://www.ansys.com/about-ansys/news-center/06-10-19-ansys-bmw-group-partner-jointly-create-simulation-tool-chain-autonomous-driving


ADAS L3 scenario based using reliability analysis
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Ref: Rasch, M.: Simulative validation of automated driver assistance systems using reliability analysis; 16th WOSD, 2019, Weimar, Germany

Daimler has implemented Ansys optiSLang 
for automation of driving scenario-based evaluation  

Result is a solid workflow considering robustness evaluation and reliability analysis 
for parameterized driving scenarios in a way that is much more efficient than Monto-Carlo Sampling.

M. Rasch (Daimler AG), Simulative validation of automated driver assistance systems using reliability analysis, WOSD, Weimar, 2019



Validation of safety critical 
scenarios with 

Reliability Analysis  



Functional vs. Logic Scenarios



14

How many miles …

There is a crucial Need for Smart Reliability Methods for 
Vehicle Function Evaluation & Validation

Source: Nidhi Kalra, Susan M. Paddock: Driving to Safety, www.rand.org 



Probability 
distributions

Test case 
generation

Logical 
scenarios

Simulation

VRX

SCADE

SPEOS

Estimation of 
probability of 

safety violations

Risk assessment, 
including avoidance 

criteria and comparison 
with human performance

Concrete 
scenario [i]

Result 
visualization

Evaluation of 
safety metrics, 

e.g. TTC

Evaluation 
results

Vehicle function evaluation based on simulation of scenarios
Workflow generation & automation capability
• Combine capabilities of several tools,
• Standardize workflows & 
• Reduce manual work

Reduce number of designs
necessary for validation

Feedback to safety
analysis

Quantification of
probability of failure

Identification of safety critical inputs
& input combinations

Identification of software
malfunction

Comparison of performance between
different software versions/ scenarios
etc.

Input from safety
analysis including
• measurements, 
• databases etc.



Design Understanding
Investigate parameter sensitivities, 

reduce complexity and 
generate best possible metamodels

Design Understanding
Investigate parameter sensitivities, 

reduce complexity and 
generate best possible metamodels

Model Calibration
Identify important model parameter 
for the best fit between simulation 

and measurement

Model Calibration
Identify important model parameter 
for the best fit between simulation 

and measurement

Design Improvement
Optimize design performance

Design Quality
Ensure design robustness and 

reliability

Design Quality
Ensure design robustness and 

reliability

CAE-Data

Measurement
Data

© Dynardo GmbH

Design Improvement
Optimize design performance

Robust Design Optimization Strategy

Optimized, 
Robust Design



Robustness Evaluation 
Ensure your product quality!

Latin Hypercube 
Sampling

Output 
parameter variation

Input parameter 
importance
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Sensitivity vs Robustness vs Reliability Analysis
Analysis Design Space Application Main purpose and 

outcome
Probability of 
failure  

Sensitivity “Optimization space” with equal 
distribution of input parameters 
(all controllable)

Early in design 
phase;
software function 
testing during 
development

Exploration of the 
parameter variation 
space, Identification of 
software malfunction, 
consistency checks

not of interest 
here

Robustness “Robustness space” with particular 
distribution of input parameters 
(controllable and not controllable)

Later in design 
phase; software 
function 
validation

Estimate variation range 
of output parameters, 
Quantification of 
probability of failure, 
Identification of critical 
input parameters

is usually 
higher (10-6

and higher)

Reliability “Robustness space” with precise
distribution of input parameters 
(controllable and not controllable), 
Definition of a failure limit is crucial

Later in design 
phase, software 
function 
validation

Quantification of 
probability of failure, 
Identification of critical 
input parameters

is usually very 
low (10-6 and 
lower)
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 here: 28,500 simulation runs versus 39.420.000 simulations

“jam-end” functional scenario  logical scenarios with 13 parameters  require 39.420.000 concrete scenarios using Monte-Carlo approach

Adaptive Sampling or ISPUD reduce the required concrete scenarios to obtain similar results in terms of probability of failure

Example of scenario based evaluation
Reduce the number of simulation by a factor of 1000

M. Rasch (Daimler AG), Simulative validation of automated driver assistance systems using reliability analysis, WOSD, Weimar, 2019



Scenario based evaluation (details)
Automated workflow in Ansys Autonomy platform

1. Define scenario and its 
parametric

2. Derive parameter scatter 
and correlation

3. Define criticality by means 
of available KPIs, e.g. TTC

4. Automate simulation runs 5. Get parameter importance by 
robustness analysis

X1

X2

6. Uncertainty quantification by 
reliability analysis
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Jam End Scenario: Random Parameters

• 7 stochastic parameters 
describing e.g. jam end speed, 
lead vehicle speed & 
deceleration, lead vehicle 
class, pullout direction & time



• Collaborative work possible because all information is everywhere available, 
here: input parametrization in Postprocessing

• Determine concrete critical scenarios, export & visualize them

23

Jam end scenario variation with optiSLang
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Jam end scenario variation with optiSLang

• 3 most important parameters can explain 99.5% 
of variation

• TTC can be represented by lambda distribution
very well

• However, extrapolation into region TTC <= 0 is
not confident

Reliability analysis:



25

Detection of software malfunction

• Partially low local Coefficient of Prognosis (CoP) 
• Assumption special physical and control 

mechanisms in these regions
• Some output parameters are used for the steering 

and therefore have impact on other output 
parameters

• Analysis provided excellent indication which 
parameters are used for steering  
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Safety Assessment

Robustness Analysis Reliability Analysis

• Check variation of 
inputs & responses

• Check plausibility in MOP 
to proof simulation model

• Eventually reduce parameter number
• 200 – 500 samples
• Check different safety limits
• Stop if failure probability is large 

• Define specific failure criterion
• Perform reliability analysis 

(Importance Sampling) until defined 
accuracy is reached 

• 10000 – 20000 samples
• In case of fulfilled safety 

requirement: proof the result with 
different approach 



• Definition of the limit state function to be analysed for a concrete scenario with the defined input
parameter variation range
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Jam end scenario variation with optiSLang
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Jam end scenario variation with optiSLang

• Time to collision as limit state, TTC <= 0.0 s
• 10% accurracy with 5 iterations each having 1000 samples 

µ ξ

fX(x)

x

Limit state

Reliability analysis: Adaptive Sampling



VRX Driving Simulator & 
optiSLang
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Scenario: Car-to-Bicyclist Nearside Adult 50% – CBNA 50

Description: 
A collision in which a vehicle travels forwards towards an bicyclist crossing its path cycling from the nearside and 
the frontal structure of the vehicle strikes the bicyclist when no braking action is applied.

Scenario Name CBNA

Type of test AEB

VUT speed [km/h] 10 - 60

VUT direction Forward

Target speed [km/h] 15

Impact location [%] 50

Lighting condition Day
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Optimization Task

Parameter
• VUT speed
• Collision threshold
• Default Breaking Force
• Detection Range
• EBT visual
• FOV Horizontal
• Speed threshold

Objective functions
• distance to collision > 2m 
• deceleration < 3 m/s²
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VRX Driving Simulator & optiSLang: Example scenario (CBNA50)



Live Demo

VRX Driving Simulator & optiSLang: Example scenario (CBNA50)

• Interactive Postprocessing for data analysis



VRX Driving Simulator & optiSLang: Example scenario (CBNA50)

• Implement Images



VRX Driving Simulator & optiSLang: Example scenario (CBNA50)

- Visualize the impact of the other parameters not illustrated in the 3D plot



VRX Driving Simulator & optiSLang: Example scenario (CBNA50)

- Outlier detection & MOP generation



VRX Driving Simulator & optiSLang: Example scenario (CBNA50)

- Cluster analysis to detect correlations between input-output, output-output



VRX Driving Simulator & optiSLang: Example scenario (CBNA50)

- Understand your design



Automatic Controller 
Calibration with VRX Driving 
Simulator and optiSLang
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Identify Calibration Parameters

• We begin with the original demo:
‐ SCADE defines a deterministic model of the software controller 
‐ SCANeR defines the driving scenario with the controller in the loop

• We then select all SCADE variables to be used as calibration parameters
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Define Criteria for System Response

• The controls engineer defines the desired characteristics for system response

• These criteria are entered into optiSLang



Define the Optimization Strategy

• optiSLang runs the driving scenarios in succession to compute optimal calibrations
- The driving scenarios are set up to run in batch mode with “Drag-and-drop” integration
- optiSLang provides a robust feature set of optimization methods to choose from
- Our strategy in this example uses standard best practices to tune Kp first and then Ki



Execute the auto-tuning
• optiSLang exercises the optimization strategy

- The best design is confirmed after 22 runs (total execution time ~= 10 minutes)
- More complex control laws scale up very well: an example with 10 cals took a few hours
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Automatic Controller Calibration



Q&A



Thanks !
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