

 Image: Source: www.dynardo.de/en/library
 Presented at the 17th Weimar Optimization and Stochastic Days 2020

Simulation based Digital Twins

for Predictive Maintenance, Optimal Operation & New Business Models

Teresa Alberts, Christof Gebhardt, CADFEM Group & ITficient June 26th 2020, WOST CADFEM

CADFEM GmbH Christof Gebhardt

ITficient AG Teresa Alberts

CADFEM GROUP

Overview ITficient

Digitale Service Models

Digital Twins

Analytics

Active poll

Join at slido.com #41061 What do you understand by a Digital Twin?

0 1 4

Simplied simulation model behaviour model Find useful life replica magic Data models Big Data system model physikalisches abbild Digital Factory a copy of a full system Mathematical modelling

CADFEM

Digital Twin

Connection between the physical and digital world

- Sensors + Analytics (+)
 Simulation / Machine Learning
- Realtime Condition Monitoring
- Predictions and What-if-Scenarios

Optimal operation

Optimal operation

- Secured availability
 - Condition based monitoring
 - Cost reduction by optimized service and spare parts
- Balancing of operation time, performance & operation costs

New revenue streams

- New business models
 - Maintenance as a Service
 - Recommendations as a Service
 - Machine as a Service
- Customer specific solution sales
 - Configuration as a Service

Smart Products / Services

Customer loyalty

- Competitive positioning
- Customer satisfaction
- Trust
- Innovation power

Digital Twin Use Case Verbund Hydro Power

Verbund

Verbund Hydro Power

- Austria's leading electricity company
- Gain 90% of generation in 130 hydropower plants
- Regulation controlled via
 7 central bases

Challenges

Downtimes

- Loss of production
- Procurement service and spare parts
- High cost
- Maintenance at fixed defined intervals

High operating costs

• Risk minimization (quality, contracts, ...)

Verbund

"Our goal are transparent power stations ("gläsernes Kraftwerk") for which we know the exact current status of all components, to avoid downtimes by unpredicted failures."

Karl Heinz Gruber CEO, VERBUND Hydro Power GmbH

Project Approach

Real-time Monitoring of Remaining Service Life

Digital Twin Generation

3D-Geometry

A Statch-machanet Analyse Strategie Analysis and analysis of the strategie Analysis of the stra

Finite Element Analysis

Real-time Monitoring of Remaining Service Life

Finite Element Analysis: Determination of the hotspots

Reduced Order Model (ROM)

Real-time Monitoring of Remaining Service Life

Technical Implementation of the Prototype

Sensors	IoT Platform	Simulation Virtual Sensors & Lifetime Analysis	Analytics
 Physical Sensors eg. Speed, flow rate, power Import Sensor Data in IoT-Platform 	Device Management & Security Transfer Sensor Data to Simulation Model (ANSYS TwinBuilder)	 Generation of the simulation model in ANSYS TwinBuilder Determination of the hotspots Reduced Order Model (ROM) Integration of Fatigue Analysis trough sensors and virtual sensors 	Visualization of sensors, virtual sensors and remaining lifetime in Verbund Dashboard

♀ ITficient > Rabenstein Turbine 1 > Dashboard 1 Datum FILTER 12. März 2019 ŧ. **FESTICKEITSNACHWEIS** HOTSPOT1 HOTSPOT 2 LAUFRADSTELLUNG LEISTUNG ~ ~ ~ ~ × 2 88,82 % 6,80 MW 15.584 Jahre 26.233 Jahre Verbund ~ SENSORDATEN LAUFKRAFTWERK RABENSTEIN \sim - Laufradeingangsdruck (bar) - Laufradausgangsdruck (bar) Spannung Hotspot 1 (MPa) - Spannung Hotspot 2 (MPa) 160 120 VERBUND Hydro Power GmbH Eigentümer: Inbetriebnahme: 1987 80 Österreich, Steiermark Region: Mur Gewässer: 13.9 MW Leistung: 40 65.981,1 MWh Jahreserzeugung: Turbinenart Kaplan Turbine: Turbine 1 0 00:00 04:00 08:00 12:00 16:00 20:00 SENSORDATEN v

Prototype Development: What-if Scenarios

- Provide greater insight into how to operate the system in a systemfriendly way
- Provide insights what it means for the lifetime if the system is operated under very high or low loads (synthetic load spectrum)

What-if Scenarios: Balance of Plant Performance & Degradation

Benefits for Verbund

"In addition to achieving the highest possible **availability** of hydropower plants, we also aim to get a more well-founded forecast of their remaining service lives. We also expect benefits in terms of the **condition-based servicing** and the avoidance of expensive repairs."

Dipl.-Ing. Dr. Bernd Hollauf Project Manager Digital Hydro Power Plant at Verbund Hydro Power

"This process of asking 'what if X happens' can provide us with greater **insight into how to operate the system** in a systemfriendly way or what it means for the service life if the system is operated under very high loads."

Dipl.-Ing. Michael Artmann Project Manager Digital Twin at Verbund Hydro Power

Use Case Oil & Gas Safety Valve

.....

Condition based Operation

- Evaluation of plant operation
- Fulfill GHG regulations
- Minimize losses
- New service by valve OEM

Virtual Sensor for Medium Released

- Equip safety valve with additional pressure sensor
- Engineering knowledge and simulation
 model from OEM development process
- Track pressure over time → quantify medium released
- Virtual sensor as digital service for operator, managed by valve OEM

Optimal operation

Optimal operation

- Secured availability
 - Condition based monitoring
 - Cost reduction by optimized service and spare parts
- Balancing of operation time, performance & operation costs

New revenue streams

- New business models
 - Maintenance as a Service
 - Recommendations as a Service
 - Machine as a Service
- Customer specific solution sales
 - Configuration as a Service

Smart Products / Services

Customer loyalty

- Competitive positioning
- Customer satisfaction
- Trust
- Innovation power

ITficient

67%

50%

0 1 2

83%

Which of these Topics are relevant for you and your Company?

Development of smart Products and smart Services

Predictive Maintenance for your End Customer

Join at slido.com #41061 Condition Monitoring for your End Customer

Condition Monitoring for your Production

Predictive Maintenance for your Production

How arises an ecosystem right now?

Supporting your customers in the development of new digital service models Technical support for the creation of your digital twin

Contact

CADFEM GmbH Christof Gebhardt cgebhardt@cadfem.de +49 8092 7005 65

ITficient AG Teresa Alberts teresa.alberts@itficient.com +41 79 368 0202

WOST 2020 Workshop: Digital Twin

Teresa Alberts (ITficient AG) Christof Gebhardt (CADFEM GmbH) Sebastian Wolff (Ansys Austria) David Schneider (Ansys Dynardo)

What is a Simulation Based Digital Twin?

- Connected, virtual replica of an in-service physical asset, in the form of an integrated multi-domain simulation, that mirrors the life and experience of the asset
- Enables system design and optimization, predictive maintenance and optimize industrial asset management

©2020 ANSYS, Inc. / Confidential

How Digital Twins help our customers

Gain/retain Competitive Edge

© 2020 ANSYS, Inc. / Confidential

Implementing A Digital Twin Presents Significant Challenges

1.65BN Assets under condition monitoring by 2025¹

\$80BN/Yr Investments in IIoT¹

Over 90% of executives say they are willing to digitally reinvent their industry and business.....yet less than 10% have fully integrated digital threads^{2,3} To enhance adoption of digital twins, they must be:

- Predictive
- Accurate
- Real-Time

1. Forbes

- 2. Accenture: Seizing the Digital Opportunity in Aerospace & Defense 2018
- 3. Accenture: The Digital Thread Imperative 2017

Yet The Benefits Are Clear

15% Revenue Gain¹

- New business models
- Improved productivity and accelerated new product introduction
- Competitive advantage

10% Cost Reduction¹

- Warranty cost reduction
- Operational efficiency
- Shortened design and development cycles

30% Maintenance Cycle Time Improvement²

Improved maintenance
 efficiency

1. McKinsey & Company: Five Keys to Digitizing Aerospace and Defense

2. Companies Aviation Week MRO

Customers are putting simulation at the center of their Digital Twin implementations

Solution Capabilities Required To Deliver These Benefits

Simulation based Digital Twin

Validate and Optimize the Twin

©2020 ANSYS, Inc. / Confidential

Ansys

3D Reduced-Order Modeling Interfaces Transforms 3D simulation results into system-level models

- Use Reduced-Order Modeling (ROM) interfaces to generate accurate, compact models from detailed 2D and 3D physics simulations.
- Simulates in a fraction of the time required by 3D Techniques for all ANSYS physics
- Link to a variety of ANSYS tools to create high performing models.

Application Examples of Digital Twins with Twin Builder

Battery/Electrification

Structural

Industrial Automation

Electric Motors and Machines

Heat Exchangers

Rotating Machinery

©2020 ANSYS, Inc. / Confidential

Ansys / DYNARDO

presented at the 17th Weimar Optimization and Stochastic Days 2020 | Source: www.dynardo.de/en/library

Meta models for Digital Twins

Dr. Sebastian Wolff, Dr David Schneider, Dr Thomas Most, Geza Horvath WOST 17 (June 2020)

optiSLang Reduced Order modelling (ROMs)

- ROM's replace a higher-dimensional model by a simplification
 - **Physical ROMs:** solve a physical system of equation with less variables; fast and flexible, but often only linear
 - Data based ROMs: Based on data analysis, nonlinear
- Databased physics agnostic

...

- Real time surrogate models OD-3D Field data (e.g. FEM, CFD, signals)
- Automatic (spatial) parameterization based on measurements or simulations
- **3D Robust Design** detect hotspots, failure locations, sensor positions
- Data & Solver agnostic Supports CAE solver formats Analysis of measurements (CSV,STL, images)

Overview on of optiSLang meta models (parameter based)

- MOP (for scalars)
 - Part of optiSLang
 - Build: license needed
 - Usage: no license needed
- Field MOP for curves (Signal MOP)
 - Part of optiSLang capability SoS
 - Build: license needed
 - Usage: license needed
- Field MOP for 2D/3D (mesh, grid, point cloud, image,...)
 - Part of optiSLang capability SoS
 - Build: license needed
 - Usage: license needed; no license for FMU

Metamodel of Optimal Prognosis (MOP)

- A fully automatic workflow identifies the subspace of important parameter with the best possible meta-model (MOP) of every response variable resulting in the best possible forecast quality towards result variation
- Include multi-dimensional nonlinear dependencies with automatic identification + ranking of important input variables

•MOP Solves 3 Important Tasks: 1st Best Input Variable Subspace **2**nd Best Meta-model Coefficients of Prognosis (using MoP) full model: CoP = 98 % **3**rd Estimation of Prediction Quality INPUT: X5 0 % INPUT: X4 0 % MOP DoE X param 3 INPUT: X1 21 % INPUT INPUT: X2 34 % Solver 0 2 -1 -2 -33 -2 -1 INPUT: X3 62 %

0.2

04

0.6

CoP [%] of OUTPUT: Y

0.8

How to generate Design of Experiments

Deterministic DoE

- Complex scheme required to detect multivariate dependencies
- Exponential growth with dimension

Advanced Latin Hypercube Sampling

- Reduced sample size for statistical estimates compared to plain Monte Carlo
- Reduces unwanted input correlation

Optimizing Design of Experiments: Adaptive MOP

- New points are placed in region with large gradients
- Local CoP is improved significantly with small number of additional designs

nsys

MOP – Metamodel of Optimal Prognosis

MOP for scalar values:

- Objective measure of prognosis quality = CoP
- Determination of **relevant parameter subspace**
- Determination of optimal approximation model
- Approximation of solver output by fast surrogate model without over-fitting
- Evaluation of **variable sensitivities**

Local CoP

0.992

0.988

0.986

0.984

0.980

0.979

©2020 ANSYS, Inc. / Confidential

calculate forecast quality using **CoP** (**C**oefficient **o**f **P**rognosis)

Measure Goodness of Fit = Coefficient of Determination (CoD)

- Coefficient of Determination quantifies merely the Goodness of Fit.
- Interpolation models (e.g. MLS, Kriging) can reach CoD of 1.00
- But perfect fit does not mean perfect forecast quality!

Measure forecast quality = Coefficient of Prognosis (CoP)

- Coefficient of Prognosis sums up the errors from both cross validation cases:
- CoP is an objective measure of forecast quality.

$$CoP = 1 - \frac{SS_E^{Prediction}}{SS_T}$$

//nsys

©2020 ANSYS, Inc. / Confidential

Approximation Models

- Polynomials Linear Regression
 - Linear & quadratic with/without mixed terms

• Moving Least Squares

- Linear and quadratic basis
- Exponential or regularized kernel

• Kriging

• Isotropic & anisotropic kernel

• Externals

- ASCMO
- Neural networks (Tensorflow)
- DX meta models (GARS, Support Vector Regression)

~	Mo	odels	
	$\mathbf{\tilde{v}}$	Polynomials	
		Use	✓ True
		Order	2
		Coefficient factor	2.00
	\mathbf{v}	Moving least squares	
		Use	✓ True
		Order	2
		Coefficient factor	8.00
	~	Kriging	
		Use	✓ True
		Anisotropic	False
		Coefficient factor	8.00
	~	External	
		ASCMO	False
		Feedforward_network	🗹 True
		Signal MOP	False

Deep Learning Extension

- Automatic configuration of neurons and layers
- Cross validation to estimate Coefficient of Prognosis
- Available as external python environment
- Neural networks are treated as one of a library of approximation models
- Competition is done in the MOP framework based on the CoP

//nsys

©2020 ANSYS, Inc. / Confidential

Integration of DX meta-models (2020 R2)

>DX models can be considered in the MOP competition

Cross validation estimates have been verified

• Implementation of Python wrapper within custom surrogate

DXGARS approximation of Eigen_frequency_3 Coefficient of Prognosis = 98 %

Response	CoD adjusted	CoP	Model
<pre>Eigen_frequency_1</pre>	0.841747	0.836	Linear Regression of order 1 (no 2.5 3 3.5 4 15 45 40 length
<pre>Eigen_frequency_1</pre>	0.955115	0.945973	Linear Regression of order 1 (wit - Depth 4.5 Rod
<pre>Eigen_frequency_1</pre>	0.984982	0.983589	Linear Regression of order 2 (with mixed terms, BoxCox)
<pre>Eigen_frequency_1</pre>	0.998362	0.973476	Moving Least Squares of order 1 (ex 🗸 External
<pre>Eigen_frequency_l</pre>	0.999582	0.979185	Moving Least Squares of order 2 (e)
Eigen frequency l	0.997524	0.988275	Kriging (isotropic kernel, BoxCox)
Eigen frequency 1	0.998804	0.987579	Kriging (anisotropic kernel) DXGARS 🗸 Irue
Eigen_frequency_1	1	0.980692	DXGARS DXKriging 🗸 True
<pre>Eigen_frequency_1</pre>	1	0.980452	DXKriging DXNPR 🗹 True
Eigen_frequency_l	1	0.921952	DXNPR DXPoly False
<pre>Eigen_frequency_1</pre>	0.998672	0.991904	Feedforward_network Feedforward_network False

© 2020 ANSYS, Inc. / Confidential

Openness – open and programmable architecture

- Plugins
 - CAx tool integrations
 - Algorithms
 - (PLM-) Databases
- Interfaces
 - Batch
 - Scriptable (.py, .opx)
 - Shared libraries (.dll, .so)
 - Remote control (TCP/IP)

Customization overview

- optiSLang provides plugin mechanisms via Python scripting
 - Define own integration nodes
 - Implement own algorithms
 - Customize Solver
 Wizard and
 Postprocessing
 - Extend MOP algorithm with own surrogates (beta)
 - Implement Data Mining functions

Reduced order modelling for Digital Twins

TrainingDeployCreate suitable training data (e.g.
through DOE) and create a real-time
approximation model (ROM)Connect ROM with online sensors and
deploy to ECUs (e.g. by TwinBuilder)1. Simulation2. Training3. Validate4. Deploy

Simulation

Create a simulation model predicting the performance. Parameterize model with virtual sensors

🎙 Validate

Check prognosis quality of simulation and meta model.

Training of field meta models

1. Simulation

. Training

3. Validate

4. Deploy

Software demonstration

- ANSYS Mechanical model
- optiSLang DOE
- Create Field MOP

Validation of meta model

3. Validate

4. Deploy

Software demonstration

- Analyse Field MOP:
 - Stddev and hot spots
 - Field CoP and sensitivity
 - Variation patterns
 - OSL PP for interpolation functions
- Outlook: Measurements
 - Filter noise (separate example)
 - Identify outliers (Random field; optiSLang CV)

Export and consume Field Meta Models

1. Simulation

21

. Training

3. Validate

4. Deploy

1. "Brute force": Direct export and consumption of data

- Export any data from Field MOP database as CSV to Excel, optiSLang etc.
- Connect Field MOP consumpton with 3rd party software through shared libraries:
 - Solve Field MOP and retrieve complete data vectors (3D fields, signals, etc.)
 - Access mesh connectivity
 - Use embedded scripting for full SoS capability including Field Mop creation and I/O
 - ANSI C API and examples for Matlab, C++, Python ...

305	
326	DYNARDO FMOP API fmop error t FMOP getModelIdents
327	(const fmop_db_handle_t database, fmop_dataobject_types data_ty
349	DYNARDO_FMOP_API_fmop_error_t_FMOP_getModelParamIdents
350	(const fmop_handle_t fmop, char *** const param_idents, size_t
370	DYNARDO_FMOP_API fmop_error_t FMOP_getParamLowerBounds (const fmop
390	DYNARDO_FMOP_API fmop_error_t FMOP_getParamUpperBounds (const fmop
407	DYNARDO_FMOP_API fmop_error_t FMOP_getModelTotalAvgFCoP (const fmop
426	DYNARDO_FMOP_API fmop_error_t FMOP_getModelAvgFCoP (const fmop_hand
443	DYNARDO_FMOP_API fmop_error_t FMOP_getModelDim (const fmop_handle_t
469	DYNARDO_FMOP_API fmop_error_t FMOP_getDataPointIndizes (fmop_handle
499	DYNARDO_FMOP_API fmop_error_t FMOP_getDataPointCoors (fmop_handle_t
500	
502	
503	/*********
509	
535	DYNARDO_FMOP_API fmop_error_t FMOP_approxField
536	(const fmop_handle_t fmop, const double * param_values, double
537	
	ANSI C/C++

2. Innovation: Export FMU 2.0 (Functional Mockup Unit)

- User can write his own analysis macros
- Combine macros into a single automated analysis
- Export workflows to FMU 2.0 (model exchange)
- Consume FMU in optiSLang or TB
- Visualize all 3D fields afterwards in SoS post prociessing

Pefine a FMU solver by combining Function Quantity is V Evaluate Field-MOP	pre-defined or custom macros dent Data type		T	M	U
output TEMP param TEMP input TEMP_env input TEMP_CPL input TEMP_MCI Maximum value input TEMP output max[TEMP]	node quantity string scalar quantity scalar quantity U scalar quantity node quantity scalar quantity			NCTION DCK•UP	IAL
	circuit_fmop.fmu - C:\	Users\ghorvath\Documents - FMU_So	s		- D X
	icircuit_fmop.fmu - C:\ Parameter	Users\ghorvath\Documents - FMU_So	S 😻 Varia	bles	- C X
	circuit_fmop.fmu - C:\ Parameter TEMP_CPU 19.8	Users\ghorvath\Documents - FMU_So FMU_SoS Absolute path	S Varia thi[pocuments]circuit_fmop.fmu	bles E	Responses
	circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425	Users\ghorvath\Documents - FMU_So FMU_SoS Absolute path rsighorva Inputs	S Varial th'Documents',circuit_fmop.fmu Outputs	bles 🛛 🗐	Responses
	 circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8 	Users\ghorvath\Documents - FMU_So FMU_Sos Absolute path Fighorva Inputs Search for	S Varial th'Documents'kircuit_fmop.fmu Outputs Search for	bles E	Responses
	Circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8	Users\ghorvath\Documents - FMU_So FMU_SoS Absolute path Fisiphorva Inputs Search for Name Value	S Varial th'Documents'kircuit_fmop.fmu Outputs Search for e	bies E Open	Responses
Felect a function	circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8	Users\ghorvath\Documents - FMU_So FMU_SoS Absolute path Fisiphorva Inputs Search for Name Valu 1 TEMP_CPU 19.8	S Varial th'Documents'ktraut_fmop.fmu Outputs Search for e 1 max/TEMP	bles E Copen	Responses
Delect a function	Circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8	Users\ghorvath\Documents - FMU_Sos FMU_Sos Absolute path • rs\ghorva Inputs Search for Name Valu 1 TEMP_CPU 19.8 2 TEMP_CPU 19.8	S Varia th'Documents (straut_fmop.fmu) Outputs Search for e Name 1 max[TEMP]	bies E Copen	Responses
Select a function	Circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8	Users\ghorvath\Documents - FMU_So Absolute path rs\ghorva Inputs Search for 1 TEMP_CPU 19.8 2 TEMP_env 19.8	S Variat th'Documents'prant_from,fmu Outputs Search for e 1 max[TEMP]	bies Copen Value 0	Responses
Belect a function	Circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8 Input slots	Users\ghorvath\Documents - FMU_So Absolute path rs\ghorva Inputs Search for 1 TEMP_CPU 19.8 2 TEMP_env 19.8 3 TEMP_MCU 7.425	S Variat th'Documents'µtrait_fmop.fmu Outputs Search for e 1 max[TEMP]	bies Copen Value 0	− □ × Responses max_TEMP_ 0 Output slots Standard slots
Belect a function	Circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8 Input slots Standard slots	Users\ghorvath\Documents - FMU_So Absolute path rs\ghorva Inputs Search for 1 TEMP_CPU 19.8 2 TEMP_env 19.8 3 TEMP_MCU 7.425	S Varia th'Documents'/circuit_fmop.fmu Outputs Search for e 1 max[TEMP]	bles Copen Value 0	Responses Responses max_TEMP_ 0 Output slots Standard slots
Gelect a function	circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8 Input slots Standard slots	Users\ghorvath\Documents - FMU_So Aboute path rs/phorva Inputs Search for I TEMP_CPU 19.8 2 TEMP_env 19.8 3 TEMP_MCU 7.425 <	S Variat th'Documents'/circuit_fmop.fmu Outputs Search for e 1 max[TEMP] c	bles Copen Value 0	Responses Max_TEMP_ 0 Output slots Standard slots
pelect a function	circuit_fmop.fmu - CA Parameter TEMP_CPU 19.8 TEMP_MCU 7.425 TEMP_env 19.8 Input dots Standard slots	Users\ghorvath\Documents - FMU_Sc FMU_SoS Absolute path rs\ghorva Inputs Search for I TEMP_CPU 19.8 2 TEMP_env 19.8 3 TEMP_MCU 7.425 < Hide advanced options Use as input integration V Use 4	S Varia Varia th'Documents'piralit_fmop.fmu Outputs Search for T max[TEMP] soover W Use as output integ	bles =	Responses Responses max_TEMP_0 Output slots Standard slots

2. Innovation: User macros

Macros may include

- Simple analysis macros (e.g. extract maximum along an edge)
- Post processors (e.g. Log, Exp, von Mises stress from tensor, vector norms)
- Statistical analysis over all designs (for Robustness, Reliability or Fatigue)
- Complex analysis (e.g. identification of tightness of contact areas in high pressure valves; see presentation of Tamasi et al)

🍥 Manage macros								?	×	
Macros saved in this proj	ect:									
Ident	Short n	ame			FMU	SDB	2x?	@#	^	
createDummyInputs	Create	dummy inputs for	rtest							
elementApproxFieldN	1OP Evaluat	e Field-MOP			\checkmark					
elementEvalRF	Evaluat	e random field			\checkmark					
elementGetMax	Maxim	um value			\leq					
elementGetMin	Minimu	ım value			\leq					
elementSetValue	Set valu	ie								
elementSup	Differen	ice								
elementVec3Norm	vec3No	rm								
elementVonMises3	vecorvo von Mis									
identifyContactTightr	ess Identify	tightness of a co	ntact area							
nodeApproxF	· · · · · · · · · · · · · · · · · · ·									
or of	stom solve nction Evaluate Fiel Minimum va input output Set value input output input param	er definition er by combining pre-de Quantity ident d-MOP alue pstrain min[pstrain] pstrain oldent[pstrain] new_value namedSelection	fined or custom macros Data type element quantity scalar quantity element quantity scalar quantity scalar quantity string	Add	Remove	Sets part i choss with Inpu Out	t valu all or a p is to be s en. The r a new idd uts • iIdeu The i • new, The r oIde The i ther au • nam The i	IC art of a t iset then t modified t ent. int [<i>input</i> dent of t walue iset [<i>outp</i> dent of t rgumer edSelect	ield vecto he ident field vecto <i>element</i> input sca of the o out elemen he modifie its	or to a defined val of the respective r or is stored in rthe <i>ident</i> () <i>ilar ident</i> () utput field vector <i>nt ident</i> () ed field quantity.

×

ue. If the value of only a named selection can be database and associated

at the respective locations

v then all active data

Cancel

2. Innovation: Consumption of FMUs in optiSLang workflows

- Use Field MOP FMU for simulation in optiSLang
- FMU solver node (Beta option)
 - Autoregister inputs and responses
 - Runs in optimized mode
 - Visualize all 3D fields afterwards in SoS post prociessing
 - Entirely implemented using optiSLang's powerful customization features (Python 3)

🛞 sos_demo.fmu - C:/Users	;/Pul	blic/Documents/Dy	nardo/Statistics or	n Structures	s - FMI	U_SoS						×	
Parameter	Q		MU_SoS			Variables			=	Responses			
E_Modul	Abs	olute path	lic/Documents/Dynardo/Statistics on Structures/sos_demo.fm			emo.fmu	-	Open	max_p	ostrain_ 0			
blank_thickness_1	Inp	outs	Outputs										
plastic_failure *	Se	earch for			Search for								
poisson_ratio *		Name	Value	Lov ^	Γ	Name		Value					
real_mat_abs_1 *	1	blank_thickness	0.09	0.0804	1	1 max[pstrain]	0						
real_mat_ord_1 *	2	E_Modul	70000	66642									
real_mat_ord_2	3	plastic_failure	0.438935	0.411									
< >	4	poisson_ratio	0.324433	0.304						<		>	
Input slots	5	real mat abs 1	0.04	0.036						Outp	out slots		
> Standard slots		real mat ord 1	115	101.6						> Standar	d slots		
	0			101.0									
	7	rho	2.757e-09	2.510									
	° <	viold stress	60	<u>۸۵ 01.</u> ×									
								Instan	t visualization				
	\odot	Hide advanced op	tions										
	<u>ا</u> ا	Jse as input integratio	n 🗹 Use as solve	er 🗹 Use a	as outp	out integration							
< >>	Designs per execution: 100000000								\$	<		>	
Show additional options									ОК	Cancel	Арр	ly	

3. Process automation for field data in optiSLang Innovation: Improved process nodes (output fields)

How does it work ?

- User prepares CAE solver
- User prepares SoS model for export (to CSV ? To mesh file ? To ANSYS Mechanical, LS-DYNA, Abaqus, Nastran?)

For each design:

- optiSLang calls SoS to modify the CAE input deck based on scalar parameters
- 2 optiSLang calls CAE to run with modified mesh

Process automation for field data in optiSLang Innovation: Improved process nodes (input fields)

How does it work ?

- User prepares CAE solver or measurement that produces field output (e.g. a modified FEM mesh, a STL 3D measurement, a signal)
- User prepares SoS model that imports the file and projects the field data into scalar "parameters"

For each design:

- 2 optiSLang calls SoS to read CAE result and gets the scalar parameters
- optiSLang uses the scalars, e.g. in (Field)MOP, as inputs to CAE solvers or in optimization goals

Software demonstration

- Export FMU
 - Workflow with max. stress and max. temperature
- Consume FMU in optiSLang
 - Minimize max stress
 - Show 3d fields afterwards in SoS

Reduced order modelling for Digital Twins

Training
Create suitable training data (e.g.
through DOE) and create a real-time
approximation model (ROM)Deploy
Connect ROM with online sensors and
deploy to ECUs (e.g. by TwinBuilder)1. Simulation2. Training3. Validate4. Deploy

Simulation

Create a simulation model predicting the performance. Parameterize model with virtual sensors

🎙 Validate

Check prognosis quality of simulation and meta model.

