

Optimization of optical and opto-mechanical systems

June 18, 2021

- **1.** Introduction to Ansys optiSLang
- 2. Robust design optimization of a light guide
- 3. Optomechanical Workflow with OpticStudio STAR module, Ansys Mechanical & optiSLang
- 4. How to get started
- 5. Q&A

Ansys WSST CONFERENCE

Introduction to Ansys optiSLang

Ansys optiSLang - a tool for Process Integration and Design Optimization (PIDO)

Ansys Digital Transformation Portfolio

CONFERENCE Ansys / **High Performance Computing** CLOUD Ansys / Optislang **Process Integration and Design Optimization** SEMICONDUCTOR MISSION-CRITICAL FLUIDS **STRUCTURES** ELECTROMAGNETICS POWER **EMBEDDED SOFTWARE** OPTICAL 1010 **/nsys** / granta **Materials Information Management NSYS** / MINERVA **Simulation Process and Data Management**

Ansys

WST

nsys

Ansys optiSLang

Process Integration, Simulation Workflow Building & Automation

Process Integration: SPEOS & optiSLang

A) optiSLang inside Workbench

B) Workbench inside optiSLang

C) Direct integration via scripts

Ansys SPEOS simulation driven by optiSLang

 Wizard driven integration for automatic workflow generation

 Easy setup of sensitivity analysis and optimization

0.7		ABR -		t 🐥 Tr		and the second	-	Wizarde		
	Scenery					= Unnamed project				
	beenery						^	Solver wizard		
hain elements							-	. 8		
Metamodelling								Sensitivity wizard		
Calculator								Optimization wizard		
Data Mining								Robustness wizard		
o storming								Reevaluation wizard		
Monitoring						A A				
Postprocessing						2 Geometry	m			
VCollab (Beta)					🗓 Light	tGuide Smulaton Task ✓				
					5	SPEOS				
Flow control					•					
Types					Ligh	ItGuide				
Utilities										
2					Workben	ဖ္မာ-node:				
Data Receive				cor	nection to	the reference				
2					Workbee	h-Project				
Data Send					VIOINDEC					
	¢						> ×			
Design Export	Message log						đ×			
2	Date	Time	Log level		Actor	Message	^			
Raw data export	1 2020-Sep-14	11:22:55.219138	INFO		LightGuide	Use existing registered files item: f2c3f964-529e-44e8-bcf2-96d2ce2cb189				
₩	2 2020-Sep-14	11:22:55.219138	INFO	2	LightGuide	Use existing registered files item: ee3ala5b-801d-479d-a9af-961793eeeefd				
	3 2020-Sep-14	11:22:55.219138	INFO	2	LightGuide	Use existing registered files item: 8b764071-3309-4abe-b4d7-a027995ac5e9				
Raw data import	4 2020-Sep-14	11:22:55.219138	INFO	2	LightGuide	Use existing registered files item: 865a8500-341e-4fef-91a7-ede5a58f22c5				
_	5 2020-Sep-14	11:22:55.203525	INFO		LightGuide	Use existing registered files item: 7e358731-6343-4472-b60a-ba4b3f737dff				
	6 2020-Sep-14	11-22-55 203525	TNEO		LightGuide	Hen avieting registered files item: 2ac33345_1f8h_4a30_a08a_40a6a1a14b47				
			Anto	H.	argueourue	out unitary sequented files from, succession from tess and underfilled)				

/nsys

Multidisciplinairy Robust Design Optimization Strategy

Ansys optiSLang User Concept

- No expertise in choosing settings or algorithms needed
- Minimal user input due to wizards (sensitivity, optimization, robustness)
- Easy building of workflows with drag & drop
- Customization of postprocessing, integrations, algorithms etc.

Ansys WSST CONFERENCE

Robust design optimization of a lightguide

Lightguide feature Applications

Dashboard

Rear lamp

Door panel

Footwell

Console

©2021 ANSYS, Inc. / Confidential

%

Light Guide Parameters				Int	ensity	v dist	ribu	Itio	n		lumino	us intensity	/ (cd)	R	egula	tic	on			
Ser	nd light	in Opti	cal	Axis			-30deg	-20	-10	. <u>°</u>		10	1	20	- 1200 - 1080 - 960		St	atus:	Area	3SS 201.27
End ar	nale control p	oints (6)	1	rimming ra	atio contro	points (6) En									- 720			H-201	L	228.92
															- 600			50-20 5D-10	DL DL	198.44 352.66
	Position	Value		P	osition	Value									- 480			H-10	L	335.43
•	0.%	0.2		• 0.	9	20	_								- 200			5U-10	DL	293.54
P	0 %	8,3	_	•	/o	30									- 360			H-5L 10U-5	51	322.75
	5 °/	0.0		5	%	20									- 240			5D-V		552.01
	3 %	3,0	-	¥	10	20	Re								- 120			HV		584.77
	10 %	117		10	0 %	20									- 0			5U-V		513.48
	10 %	11,7			• • •									_				100-	/	388.57
	30 %	12.9		30	0 %	15												100-5	5R	379.16
		12,0																5D-1	OR	340.93
	65 %	14.4		65	5 %	5										_		H-10	R	366.82
			-				Ideg									104		50-10	DR	347.17
	100 %	16.7		10	00 %	0		-20	-10	. ,		h	-	20	-	-8		5D-20 H-201	UK R	132.63
							-30deg			1.00					30deg			50-20	DR	143.00

llation	Minimum MARGIN: 31 9 Maximum MARGIN: 403
is: passed	

Area	Value	Rule	Test	Target	Margin
5D-20L	201.271 cd	5D-20L_1 (passed)	>=	40 [40]	403.2 %
H-20L	228.925 cd	H-20L_1 (passed)	>=	100 [100]	128.9 %
5U-20L	198.449 cd	5U-20L_1 (passed)	>=	40 [40]	396.1 %
5D-10L	352.666 cd	5D-10L_1 (passed)	>=	80 [80]	340.8 %
H-10L	335.432 cd	H-10L_1 (passed)	>=	280 [280]	19.8 %
5U-10L	293.542 cd	5U-10L_1 (passed)	>=	80 [80]	266.9 %
H-5L	526.97 cd	H-5L_1 (passed)	>=	360 [360]	46.4 %
10U-5L	322.759 cd	10U-5L_1 (passed)	>=	80 [80]	303.4 %
5D-V	552.011 cd	5D-V_1 (passed)	>=	280 [280]	97.1 %
HV	584.774 cd	HV_1 (passed)	>=	400 [400]	46.2 %
5U-V	513.487 cd	5U-V_1 (passed)	>=	280 [280]	83.4 %
10U-V	388.577 cd	10U-V_1 (passed)	>=	80 [80]	385.7 %
H-5R	527.44 cd	H-5R_1 (passed)	>=	360 [360]	46.5 %
10U-5R	379.167 cd	10U-5R_1 (passed)	>=	80 [80]	374.0 %
5D-10R	340.935 cd	5D-10R_1 (passed)	>=	80 [80]	326.2 %
H-10R	366.825 cd	H-10R_1 (passed)	>=	280 [280]	31.0 %
5U-10R	347.17 cd	5U-10R_1 (passed)	>=	80 [80]	334.0 %
5D-20R	132.631 cd	5D-20R_1 (passed)	>=	40 [40]	231.6 %
H-20R	142.07 cd	H-20R_1 (passed)	>=	100 [100]	42.1 %
5U-20R	143.007 cd	5U-20R_1 (passed)	>=	40 [40]	257.5 %

Multi-objective optimization of the lightguide

- Achieve **photometric regulations** for a daytime running lamp, consider national and **customer specifications**
- Obtain a homogeneous lit appearance

DOE & Sensitivity Analysis

Understand the "what happens if?"

Understand your possibilities:

- Take a deep look at the space of opportunities
- Learn which design parameter is important and how to define the goals and the limitations to find the right way

Automatic workflow with a minimum of solver runs to: Identify the important parameters for each response Generate best possible metamodel (MOP) for each response Understand and reduce the optimization task Check solver and extraction noise

Optimization strategy

Ansys WOST conference

• Best practise workflow

© 2021 ANSYS, Inc. / Confidential

- Inputs:
 - trimming ratio at 5 control points of prisms on the lightguide
 - <u>width</u> of the prisms
 - start angle of the prisms
 - <u>end angle of the prisms at 6 control points over the light guide</u>
- Outputs:
 - RMS contrast
 - Average [cd/m²]
 - Minimum [cd/m²]
 - Maximum [cd/m²]
- Objective:
 - Minimize RMS contrast
 - Maximize average luminance
- Constraint
 - Number of failed Rules = 0

Trimming Ratio:

Prisms without trimming

Prisms trimmed

• Metamodels

©2021 ANSYS, Inc. / Confidential

Results Sensitivity analysis

Postprocessing of the sensitivity analysis in optiSLang

Results optimization

- Fast optimization on Metamodel
- **Trade off** between RMS-contrast and average gets visible
- Choose a best design (in this case no. 1386)
- Verification of best design(s) with SPEOS simulation in an **automated manner**

Results optimization

• Best design chosen from the optimization

Geometry parameter						
Light_Guide_StartAngle	85					
Light_Guide_Width	2					
Speos_Light_End_Angle_CP0	11					
Speos_Light_End_Angle_CP1	11					
Speos_Light_End_Angle_CP2	12.69					
Speos_Light_End_Angle_CP3	13.88					
Speos_Light_End_Angle_CP4	15.43					
Speos_Light_End_Angle_CP5	17.69					
Trimming_Ratio_CP0	86.3163					
Trimming_Ratio_CP1	76.7445					
Trimming_Ratio_CP2	69.5204					
Trimming_Ratio_CP3	52.5202					
Trimming_Ratio_CP4	7.50777					

Area	Value	Rule	Minimum	Maximum	Minimum Specification	Maximum Specification
Beam_pattern	70.1479 cd	Beam_pattern_1 (passed)	1 [1]			
	563.584 cd	Beam_pattern_2 (passed)		1200 [1200]		1000 [1000]
5D-20L	142.944 cd	5D-20L_1 (passed)	40 [40]		60 [60]	
	142.944 cd	5D-20L_2 (passed)		1200 [1200]		1000 [1000]
H-20L	159.324 cd	H-20L_1 (passed)	100 [100]		150 [150]	
	159.324 cd	H-20L_2 (passed)		1200 [1200]		1000 [1000]
5U-20L	130.04 cd	5U-20L_1 (passed)	40 [40]		60 [60]	
	130.04 cd	5U-20L_2 (passed)		1200 [1200]		1000 [1000]
5D-10L	383.088 cd	5D-10L_1 (passed)	80 [80]		120 [120]	

©2021 ANSYS, Inc. / Confidential

Robustness analysis of the lightguide

• Parametrization:

- Inputs:

- Trimming ratio
- Level of polishing
- energy light source (Flux)
- Milling radius
- Outputs:
 - RMS contrast
 - Average [cd/m²]
 - Minimum [cd/m²]
 - Maximum [cd/m²]
 - Number of failed Rules
- Constraint
 - Number of failed Rules = 0

	Name	Parameter type	Reference value	PDF	Туре	Mean	Std. Dev.	CoV	Distribution parameter
1	Flux	Stochastic	200	\checkmark	TRUNCATEDNORMAL	268.827	36.6272	13.6248 %	280; 45; 1; 330
2	Milling	Stochastic	0.3	$ \land $	NORMAL	0.3	0.054	18 %	0.3; 0.054
3	Trimming_ratio	Stochastic	1	$ \land $	NORMAL	1	0.03	3 %	1; 0.03
4	Level_polishing	Stochastic	0.15	\frown	TRUNCATEDNORMAL	1.5	0.716259	47.7506 %	1.5; 0.9; 0; 3

Robustness analysis of the lightguide

• Results

Robustness analysis of the lightguide

Robust design optimization in a full automated manner

Multidisciplinairy Robust Design Optimization Strategy

Daytime running lamp Robust Design Optimization of a Lightguide

Customer Goals

- Achieve a high number of requirements for
 - Optimization:
 - photometric regulations,
 - customer specifications,
 - homogeneous lit appearance
 - Robustness: insensitivity to tolerances

Solution

• Multi-Objective Optimization & robustness analysis with multiple criteria

Benefits

- Meet all requirements by finding the best possible trade-off automatically with a minimum number of simulations
- Much more homogeneous lit appearance (factor 10 compared to start design)

Find best trade-off between requirements

Headlamp with lightguide

Understand where requirements are met

/nsys

WST

CONFERENCE

Ansys WOST CONFERENCE

Optomechanical Workflow with OpticStudio STAR module, Ansys Mechanical & optiSLang

- Thermo-mechanical effects on optical systems can dramatically reduce the system's optical performance.
- For the optimization of optical systems the knowledge of the impact of the thermomechanical effects is necessary in order to match the demands under real world conditions.

- Thermo-mechanical effects on optical systems can dramatically reduce the system's optical performance.
- For the optimization of optical systems the knowledge of the impact of the thermomechanical effects is necessary in order to match the demands under real world conditions.

0.02 0.015 0.01

K

0.01

Automation of workflows -

Integration optical and mechanical simulation tools in Ansys optiSLang

Optical Analysis

- Built complex workflows

Robust Design Optimization •

Initial Design

- Sensitivity Analysis
- Optimization -
- Robustness Analysis

Thermo-Mechanical Analysis

Optimized Design

Motivation

Simulation Tools

Integrating Optical, Structural and Thermal Physics using

- Ansys Mechanical incl. STAR ACT
 - Thermo-Mechanical Analysis
- Zemax OpticStudio
 - Optical Analysis
- Structural, Thermal Analysis & Results module (STAR)
 - Maps thermo-mechanical data onto optical system
- Ansys optiSLang
 - Workflow Automation

Opto_mechanical_Workflow
Laser Diode Collimation Example.zmx opticStudio STAR Reads Results 3LensSystem

Thermal & Structural FEA

nsys

Steady-state thermal analysis for the determination of lens temperature profile due to thermal impact

Static-structural analysis for the determination of lens deformations due to lens mounting

Thermal & Structural FEA

Ansys

Load FEA data into OpticStudio with STAR module

Ansys WOST CONFERENCE

With courtesy of Matthias Schlich, Zemax

1

©2021 ANSYS, Inc. / Confidential

How to automate the optomechanical Analysis?

//nsys

Optical Reference Design

©2021 ANSYS, Inc. / Confidential

Reference design <u>without</u> thermo-mechanical data

Reference design <u>with</u> thermo-mechanical data


```
    Ray path with thermo-
mechanical data
```


Opto-mechanical Workflow

Conference

Automated opto-mechanical Workflow

Ansys

© 2021 ANSYS, Inc. / Confidential

©2021 ANSYS, Inc. / Confidential

©2021 ANSYS, Inc. / Confidential

Ansys WOST CONFERENCE

