

CONFERENCE

Recent Developments of Field Meta Models

June, 17th 2021

Sebastian Wolff

Director R&D optiSLang

Statistics on Structures

- Integrate into ANSYS optiSLang Enterprise:
 - Shared license
 - 2D/3D Pre + Post GUI in optiSLang installer
 - SoS integration nodes in optiSlang workflows:
 - Open 3D Viewer
 - Create Field MOP
 - Solver for Field MOP and Random Fields
 - Mechanical/Workbench Plugin
 - SoS Python module + FMOPSolver.dll
- Recent developments in
 - Signal MOP (1D)
 - Field MOP (2D/3D)
 - Morphing for Uncertainty Quantification

Field meta models

Customer example: ROM for real-time design studies

- Validate if a gasket is "tight" in real-time what-if-scenarios
- Need to approximate resulting temperature, contact pressure and flow fields in real-time
- Based on these: analyse in 3D if the gasket is tight (true/false)

©2021 ANSYS, Inc. / Confidential

Customer Example: Optimize interior Lightguide layout using scalar & field analysis

Design

Best Design RMS-contr.=0.597

- Optimize the shape of the light guide to get the best RMS-contrast
- Perform live design exploration and what-if analysis regarding luminance homogeneity with Field MOP

• Contact: sabrina.niemeyer@ansys.com

From Scalars to Signals and 2D/3D Fields

0D: Scalars	1D: Signal	2D: e.g. Wavefronts, Performance maps	3D: Stress fields, deformations
Ansys / Optislang	Ansys / Optislang	Ansys / Optislang	Ansys / Optislang
[Premium]	[Enterprise] module Statistics on Structures	[Enterprise] Statistics on Structures	[Enterprise] Statistics on Structures
МОР	Signal-MOP	Field-MC)P
		perturbed geometry $\approx \mu$ + ψ_1 + z_1 + shape #1 + shape + 1	ϕ_2 ape #2 z_2+ ϕ_3 z_3+ ϕ_4 $z_4+\dots$
0.043 0.043 0.035 0.045 0.015 0.015 0.025 0.045 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0	ispal_dis - signal-disd, chan, 0 - Signal statistics	detar (Sex 11 - Coff Total), type mode)	Index Index

©2021 ANSYS, Inc. / Confidential

Prognosis quality: Field Coefficient of Prognosis (F-CoP)

- Check prognosis quality in Field CoP matrix:
 - Single value ("easy to use")
 - Indicates high or low model accuracy at a glance
 - Is an average value of the CoP in space
- Check prognosis quality in Field-CoP 3D plot:
 - Plots prognosis quality for each position
 - Compare with standard deviation as an indicator of the magnitude of variation
- Accept / Repair model / Add designs ?

Sensitivity analysis: See all in a single plot

- Which parameter has the largest influence at what location ?
- Where has the ROM a too low accuracy ?
- Further post processing:
 - Use statistical measures to understand the statistics of variations at each position (e.g. mean value, standard deviation, quantiles....)
 - Plot variation patterns to identify correlations in space

21R2: Improved Signal MOP creation in optiSLang GUI

- Move Signal MOP from external models to "All internal models"
- Simplify settings of Signal MOP
 - Lean settings,
 - Easy to understand,
 - Improved consistency with scalar MOP and with Field MOP in SoS GUI
 - Removed features:
 - separate options for random signal modelling,
 - FMU export (can be done manually in SoS GUI)

atabase file:	Absolute path	 C:/Users/kuehn 	/Desktop/signalmop	_osl751_s	os800/MOP.omdb							
Settings	Message log											
✓ Use advar	nced settings											
Advanced :	Settings Signal MOP	Settings										
Property		Value										
> Transfo	rmation											
✓ Models			🗇 МОР							>		
✓ Pol	ynomials											
	Use	🗹 True	Database file:	Absolute	path 🔻 lop_	osl751_sos8	00/MOP.omdb) 📂 🔻	Ope	en		
	Order	2	Settings	Settings Message log								
	Coefficient factor	2.00	Use adva	nced settir	ngs							
✓ Mo	ving least squares		Advanced	Settings	Signal MOP Settings	3						
Use 🗹 True		Maximum n	Maximum number of coefficients in Field MOD									
Order 2												
	Coefficient factor	8.00	Use fast mo	ide for Hie	Id-MOP creation							
✓ Kright	ging	— -	Treat multip	ole signal (channels cross-correlat	ed 🗹						
	Use	✓ Irue	Minimum po	Minimum point-wise F-CoP for variable filtering [%] 5								
	Anisotropic	L False	Minimum av	Minimum average F-CoP for variable filtering [%]								
N. Fac	Coefficient factor	8.00	Write algori	thm mess	ages to log file							
✓ Fee	dforward_network	C False	_		5							
× Sig			-									
- Sig		✓ True	-									
✓ Ext	ernal											
7.0	ASCMO	False	Show pos	stprocessii	ng							
> Filter	<u>ن</u>	signal_SoS - signal-SoS_chan_0 - 1	Signal statistics									
	8		Maximum Minimum Mean 95% quantile 5% quantile		Time 2:14:37.693287	Log level	Removing	Message cross	-			
	KIISI		75% quantile 25% quantile Median (50% quantile	e) 1	2:14:37.689289	INFO	Removing validation	on value cross on value	s from	L		
	5	1.		1	2:14:36.647893	INFO	Removing	cross		_		
		11:1						32		111		

21R1: New SoS GUI for 3D Pre & Post Processing

- New user experience for beginners and advanced users
 - Central focus is 3D visualization and plotted data
 - Traffic light bar shows status and leads beginners through analysis
 - Configurability: Allow advanced access to log messages, data table, script terminal, autosave log etc.
 - Move user's guide and tutorials to ANSYS website

21R1: Python3 module for optiSLang

- SoS Python3 module
 - Includes TMATH module for linear algebra
 - 100% compatible with Numpy arrays
 - Full access to all SoS functions except visualization
- Can be called from Custom Integration nodes or Python node in optiSLang
- Script API Documentation available on the Ansys Help API Documentation site.
- 21R1: Introduce first API
- 21R2: Introduce API doc (beta)

1 from sos_package import sos, tmath

sos_importer = sos.ImportDesigns(sos.referenceDesign()

- 2 sos_importer.base_path = join(designs_base_dir, "..")
- 3 sos_importer.design_name_format = "Design_?(\\d+)"
- 4 sos_importer.scanDesignRanges()

Towards user-friendly consumption of *n*D-ROMs *Macro Workflows*

- Provide a user-extensible calculator for operations on field data
- Easy-to-use connection of
 - nD ROMs with optimization through FMU
 - Field MOP Solvers / 3D ROMs with 3rd party
 - No scripting necessary, but still flexible + fast
- Operators:
 - Linear algebra on vectors
 - Statistics
 - Extract data
 - Approximate random fields and Field MOP

Manage macros								?	Х		
acros saved in this proj	ect:										
dent	Short nar	ne			FMU	SDB	2x?	@#	^		
reateDummyInputs	Create du	ummy inputs for	test								
lementApproxFieldN	1OP Evaluate	Field-MOP			\checkmark						
elementEvalRF	Evaluate	random field			\checkmark						
elementGetMax	Maximur	n value			\checkmark						
elementGetMin	Minimun	n value			\checkmark						
elementSetValue	Set value				\checkmark						
elementSub	Differenc	e			\checkmark						
lementSum										? >	x
elementVec3N											
elementVonM 🔶 💡											
dentifyConta											
nodeApproxFi	istom solver	definition									
Add	istorn solver	demittion									
Def	fine a FMU solver	by combining pre-de	fined or custom macro	s							
Fu	unction	Quantity ident	Data type								^
	Evaluate Field-	MOP				Set	t valu	le			
	Minimum valu	Je				Sets	all or a p	artofa	field vec	tor to a defined value. If the value of only a	
	input	pstrain	element quantity			part i	is to be s	et then	the iden	t of the respective named selection can be	
	output	min[pstrain]	scalar quantity			with a	en. The i a new id	nodified ent.	field vec	tor is stored in rthe database and associated	
~	Set value										
	input	pstrain	element quantity			Inpu	uts				
	output	oldent[pstrain]	element quantity				• iIde	nt [<i>input</i>	t elemen.	t ident	
	input	new_value	scalar quantity				The i	dent of t	he origin	al field quantity.	
	param	numeuselection	sung				The r	_value new value	e of the	output field vector at the respective locations	
						Out	nute				
							puts				
							• oIde The i	e nt [<i>outp</i> dent of t	<i>but elem</i> he modif	<i>ent ident</i>] fied field quantity.	
						Furt	ther a	gumer	nts		
							• nam	edSele	ction [s	trind	
þe	ect a function		\ \	Add	Remove		The i	dent of t	he name	d selection, if empty then all active data	~
										Next Cancel	

/nsys

CONFERENCE

6

Use macros inside FMU 2.0

Ansys WOST conference

- Combine multiple macros into a single automated analysis
- Export entire workflows to FMUs
- Consume FMU in optiSLang or TwinBuilder
- Visualize all 3D fields afterwards in SoS post processing
- 8.0: Initial version (FMU 2.0 model exchange)
- 21R1: Export both types model exchange and co-simulation into a single FMU file
- 21R2: Use more built-macros, improve consumption of SoS FMUs in optiSLang workflows

Example FMU workflow: Standard macros

- Approximate stress tensor with Field MOP
- Evaluate von Mises stress
- Extract min/max/mean at specific sub region
 - Or: Extract sub space components for efficient system simulation
- Save an SDB file with all intermediate results for interactive post processing

21R2: Use macros inside SoS GUI

CONFERENCE ? X

/\nsys

- Call and apply macros to data being already loaded in SoS GUI
- Set parameters of macros (designs, inputs, outputs, etc.)
- Save and visualize results in .SDB
- Write and test macros for your customers, deployed as an .SDB file.

Modeling of imperfect structures for UQ

©2021 ANSYS, Inc. / Confidential

Customer story:

How do manufacturing tolerances affect low-cycle fatigue ? CONFERENCE

- Casting process (here: gas turbine housings)
- Question: How do geometric imperfections in production influence stress / fatigue • behavior?

How to deal with measurements in FEM, e.g. geometries ?

Ansys WOST CONFERENCE

a) Validation Apply measurement

- Create CAD0 geometry and mesh
- Determine geometric deviations to measurement (STL)
- Morph mesh and compute structural performance

b) Uncertainty quantification *Robustness and Reliability Analysis*

- Create CAD0 geometry and mesh
- Determine geometric deviations to several measurements (STL)
- Create a **statistical shape model**
- Generate artifical geometries for DOE and use morphed FEM meshes in CAE

Apply Measurement of Scanned Models

- General Scheme of the Workflow:
- 1. STL File from GOM Measurement
- 2. ANSYS Mechanical Mesh of nominal Geometry

Apply Measurement of Scanned Models 1:1 morphing

UQ: Random fields depending on available data Parameterization of geometric shapes

 No/single measurement: assumptions (synthetic random field model)

2. 3-5 measurements:

empirical mean+stddev assumed correlation (synthetic random field model)

3. Many measurements: Empirical random field model Anisotropic, inhomogeneous, Non-Gaussian

21R2: Apply Measurement with SoS ACT Plugin (1/2)

ANSYS Mechanical:

- 1. Prepare measured (laser scan) data in a carefully sanitized mesh format (STL)
- 2. Define named selections:
 - Fixed nodes (top)
 - Nodes to be morphed to target location (bottom)

/nsys

21R2: Apply Measurement with SoS ACT Plugin (2/2)

New:

- Easy-to-use: directly perform mesh mapping + morphing within Ansys Mechanical.
- SoS' mesh mapper is running in the background

Ξ	Boundary to be modified								
	Scoping Method	Named Selection							
	Named Selection	Morph_Face_All							
=	Fixed boundary								
	Scoping Method	Named Selection							
	Named Selection	Fixed_Nodes							
Ξ	Mesh part to be exported to SoS	^							
	Scoping Method	Geometry Selection							
	Geometry	1 Body							
Ξ	Scan data file (*.stl,*.dat,*.cdb)								
	Scan data file	C:\TurbineWheel_Scan.stl							
=	Advanced options								
	Check for mesh stability	True							
	Linearize Morphing for quadratic elements	True							
	Maximum search distance	1 mm							
	Use mesh stabilization	True							
	Test on mesh distortion	False							
	Auto-delete bad elements	No							
	Enable visualization	On							
Э	Solver options								
	Number of CPUs used by SoS (0=all)	0							
	Internal directory	SoS MeshFromData 2							

Summary: optiSLang SoS 2021 R2

Powerful analysis tools for model understanding and approximation

> ROM: Improves operations on Field meta models using macros, FMU, simplified GUI and Python

> > UQ: Simplifies 1-to-1 mapping + morphing inside Mechanical plugin

Ansys WOST CONFERENCE

