

Optimization of Inductive Magnetics on Silicon Devices with optiSLang

Overview

- Introduction
- Design optimization
- Optimization with OptiSLang
- Results
- Conclusion

Ansys

Introduction

- FEM (Finite-Element-Method) simulation is very important tool for development of magnetic microdevices or MEMS systems (Micro-Electro-Mechanical Systems) on silicon
- Ansys Maxwell is widely used software tool
- Ansys Maxwell allows estimation of device electrical parameters in static, time (frequency)-depending or transient domains
- Good match between simulation and real measurement

Microtransformer and microinductor (2.6mm x 2.4mm)

\nsvs

Design Optimization

- Design steps for development of inductors & transformers
 - First analytical calculation
 - Definition of important design parameters and requirements (part size, number of turns, inductance....)
 - Creating of parameterized model in Ansys Maxwell
 - Simulation of the initial model
 - Parameters variation using Optimetrics (20-30 models) → → → finding of optimal design
- After 20 30 simulations (models) an optimal design with desired L values can be achieved
- Other design parameters (i.e. Rdc, coupling factor, Q) are often not optimal
- Another problem is that the parameter changes are often parallel, i.e. if we increase the number of turns, the inductance increases as well as the resistance. For such cases, a Pareto optimization can help (i.e. OptiSLang tool)

Optimization with OptiSLang I

- OptiSlang allows finding out of an optimal design based on more criteria from huge number of simulations (designs)
- The initial simulation from Ansys Maxwell is input for OptiSlang
- All parameters are defined as value range
- Target design parameter are defined as responses
- Optimization is based on criteria: objectives, constraints, limits

OptiSLang software environment

 \times

Optimization with OptiSLang II

MTrafo_Edy_20200620.aedt - C:/Temp/Ansys_Working Folder - MTrafo_Edy_20200620 - AEDT

Parameter Responses ۲ **H** Ξ AEDT Variables L11 [1:8] ~ H_term 500 C:/Temp/Ansys_Working Folder/MTrafo_Edy_20200620.aedt Absolute path 📂 🚽 Open L11_vec [8] Inputs Outputs 100 cur Search for Search for Lleakage [1:8] 3 lso Value U ^ Name Name Value Varia Lleakage_vec [8] ✓ MT MOD N turn 15 MT MOD Coupling Coeff Plot 1 MT MOD.c lat 300 u > Q11 [1:8] 15 MT_MOD.gapVC 25 > L Plot 1 u \sim ~ MT_MOD.gt > Output Variables Plot 1 30 u > < > < > Output Variables Plot 2 MT MOD.H term 500 u Input slots Output slots MT MOD.I Output Variables Table 1 100 > m Standard slots Standard slots MT MOD.lso > R Plot 1 3 u MT_MOD.N Variables Table 1 15 MT MOD.Tc 15 u > < < > Instant visualization Re-read default settings Change settings... Show advanced options > > < <

Definition of parameters and responses of AEDT Model in OptiSlang

Optimization with OptiSLang III – Aim

Ansys WOST CONFERENCE

- AEDT Model with Ansys Maxwell was created and simulated
 - L value ~ 70nH
 - K ~ 0.85
- Aim is to increase inductance L, coupling factor K, and to reduce resistance R
- The aim was to find out an optimal design of microtransformer with this properties:
 - Inductance L ~ (80nH 100nH)
 - Minimum R value
 - Coupling factor K > 0.86 (if possible >0.9)

AEDT Model of the microtransformer

Optimization with optiSLang IV – Run1

- First optimization run
- Parameter and parameter range are defined
 - 12 geometrical parameters 6 dependent
 - 6 independent input parameters used for simulation
- Goals and constraints are set up:
 - Goals:
 - L11, L22 maximized
 - R11, R22 minimized
 - Constraint:
 - Coupling factor > 0.86

Criteria

1	Name obj_max_L11_w20_50	Type Objective	Expression max_L11_w20_50	Criterion MAX	Limit	-121.623
1	obj_max_L22_w20_50	Objective	max_L22_w20_50	MAX		-121.72
1.	obj_min_R11_w20_50	Objective	min_R11_w20_50	MIN		1.19918
N.	obj_min_R22_w20_50	Objective	min_R22_w20_50	MIN		1.1969
hel	constr_CplCoef_12_const	Constraint	CplCoef_12_const	≥	0.86	0.85398 ≥ 0.86

Criteria for 1st AMOP (adaptive Metamodel of Optimal Prognosis (MOP))

Show additional options

Input parameters of the microtransformer

Optimization with optiSLang V – Run1

- Overview of parameters
- Some parameters are defined by technological design rules (i.e. Tc, Iso, tm)

	Independent Parameters	
wm	Width of magnetic core	Tc (c
Wc	Width of turns	lso (d
gapVC	Distance between via and core (x-direction)	Via =
gt	Distance betwen two neighbour turns	tm (c
c_lat	lateral length about active part	G = \
Ν	Number of turns	

	Dependent Parameters / Constants
Tc (cons.)	Thickness of turns
lso (cons.)	Thickness of insulation layer
Via = Wc - 30	Via size
tm (cons.)	Thickness of magnetic core
$G = Wc + 2^*gt$	Distance between primary and secondary turns
P = G + Wc	Pitch of coil

Optimization with optiSLang VI – Run1

esponses

Ň

- 100 real solver runs with AMOP (Adaptive Metamodel of Optimal Prognosis)
- CoP Matrix (Coefficient of Prognosis) shows that only 3 of 6 inputs are important for all the responses → we can increase system understanding:
 - most important drivers
 - less important drivers
 - nearly unimportant drivers
 - completely unimportant drivers
- The explainability of all responses are really good

Inputs CoP Matrix with important input parameters

11.06.2021

Optimization with optiSLang VII - Run1

- With this good explainability we can go on with Optimization on MOP without a real solver run with 10.000 designs and more
- Before we can minimize the 4 goals to 2 goals
 - L11 & L22 have same behaviour
 - same for R11 & R22
- Using evolutionary algorithm for this 2D Pareto optimization to get a good resolution of Pareto Front for decision making

Optimization with optiSLang – Run2

- To implement cost depended responses we start a new AMOP (real) + optimization (MOP)
- Criteria (goals & constraints) are updated
 - Goals:
 - Only L11 maximized (L11 = L22)
 - Only R11 minimized (R11 = R22)
 - Chip Size as cost function minimized
 - Constraints:
 - Coupling factor > 0.88
- Now a 3D Pareto Front are created
- Important parameter are defined and range of these parameter are tightly defined and updated in the third AMOP

Name	Туре	Expression	Criterion	Limit	Evaluated expression
obj_min_R11	Objective	min_R11	MIN		0.746029
i obj_max_L11	Objective	max_L11	MAX		-71.4477
obj_min_Chip_Size	Objective	min_Chip_Size	MIN		6.2307e-06
constr_CplCoef_12_const	Constraint	CplCoef_12_const	≥	0.88	0.855056 ≥ 0.88
new					

Criteria for 2nd AMOP

Optimization with optiSLang – Run3

- In the third AMOP the criteria are combined
- Criteria (goals & constraints) are updated
 - Goals:
 - Only L11 maximized (L11 = L22)
 - Only R11 (R11 = R22) + Chip size minimized
 - Constraints:
 - Coupling factor > 0.90
- Range of some parameter are tight defined

	Name	Туре	Expression	Criterion	Limit	
1	obj_min_R11	Objective	min_R11*10+var_min_Chip_Size	MIN		13.691
1	obj_max_L11	Objective	max_L11	MAX		-71.4477
M	constr_CplCoef_12_const	Constraint	CplCoef_12_const	≥	0.9	0.855056 ≥ 0.9
fw	var_min_Chip_Size	Variable	min_Chip_Size*1e6			6.2307

Optimization with optiSLang – Run3

- We focused now an inductance range between 100nH and 150nH
- We chose design 47 as an optimal
- Design 47 has inductance of 122nH and coupling factor K>0.9

Results I – Designs Comparison

Comparison initial design vs. now best design

Param.	Initial Design	Best design
wm	800µm	450.2µm
Wc	80µm	54.6µm
gapVC	25µm	20.65µm
gt	30µm	20.06µm
c_lat	300µm	200µm
Ν	15	29

Responses	Initial Design (at 25MHz)	Best design (at 25MHz)		
L11	71.5nH	120nH		
R11	0.95Ω	1.57Ω		
Q11	11.9	12.1		
CoupCoef	0.855	0.914		
Chip Size	6.23e-6m ²	4.7e-6m ²		

Summary & Outlook

- Implementation of OptiSlang&Maxwell for design optimization of microtransformer devices on silicon for high frequency applications is successful
- Development and fabrication of microinductor and microtransformer products based on OptiSLang simulation results

 Tolerance analysis should be in the next steps implemented → check optimal design with influence of input scattering

• HFSS simulation with OptiSlang for microtransformer and microinductor