

CONFERENCE

Design understanding with DOE as part of the virtual optics development process

Ansys WOST Conference - June 18, 2021

Sabrina Niemeyer, M. Eng. / Ansys

Biography

- Application Engineer
- Working for Ansys since 2021
- Responsible for Ansys optiSLang automation projects in the field of optics and mechanics
- Background: Optical Engineering, Automation

Stay Connected!

🖄 Sabrina.Niemeyer@ansys.com

Objective

- Generation of design understanding for the light guide of an airbag control light to optimize the homogeneity of the luminance distribution in 0° and 30°
 - Transparency of the optimization process by simulative and statistical methods
 - Saving time, human & material resources

Motivation

- Adaptation to current requirements
 - Short product development times
 - High demands on performance and robustness
- Complex optimization process of optical systems
 - High complexity regarding a high number of parameters or elements and production characteristics
 - Interacting, non-linear input parameters
- Classical procedures
 - Often not effective for multiple dimensions, correlations or interactions between parameters, or non-linear behavior
 - No transparency of the optimization process and further possible solutions

State-of-the-art

- Gradientbased method (*Damped Least Squares*)
 - 1 solution
- Evolutionary Algorithm
 - Multiple solutions
- No transparency regarding
 - The approach
 - Existence of further suitable solutions
- Optimization regarding the performance without consideration of robustness

Variation of the input parameter

- An optical analysis of a light guide is performed in Ansys SPEOS with Ansys optiSLang
- Aim: obtain a homogeneous lit appearance, represented by RMS contrast, detected in 0° and 30°

 $RMS \ contrast = Var. \ coeff. = \frac{\sigma}{\overline{L}}$

 Optimize the shape of the light guide to get the best RMS contrast

Reference Design

©2021 ANSYS, Inc. / Confidential

Process Integration

- Evaluation of the luminance distribution with responses
 - RMS contrast
 - Average
- Simulation of 100 designs
- Analysis based on $2 \cdot 10^8$ rays
- Parameter ranges
 - R1 Radius: [0.1 1 mm]
 - R2 Radius: [5 14 mm]
 - R3 Radius: [1 20 mm]
 - R4 Radius: [1.1 5 mm]
 - R5 Radius: [4 16 mm]

- CoP measures how good regression generalizes for unknown data
- Very high model accuracy
- R3 and R5 most important parameters
- → Reduction of the number of parameters from five to two important inputs

• Correlation Matrix of the Average

• Correlation Matrix of the RMS contrast

- Metamodel of optimal Prognosis (MOP)
 - Best fitting approximation of response variables depending on most important parameters
 - Interactions between R3 und R5
 - Different positions of minima

RMS_Symbol_0° + RMS_Symbol_30° \rightarrow min

//nsys

Interim conclusion

- Sensitivity Analysis calculation of 100 designs
 - RMS contrast usable for a basic homogenization
 - Single extremes of local luminance persist
 - No conclusion about local luminance possible with single scalar value
 - Reduction of design complexity:
 - > 2 of 5 input parameters have to be considered for optimization
 - > 3 of 8 global responses used for defining the criteria

Field-dependent homogeneity evaluation

- Analysis of spatially and temporally distributed data like FEM data or signals
- Analysis of the parameters influence & position with F-CoP
- Evaluation of local luminance variations in the measurement range to account for local luminance extremes
- Local luminances most influenced by variation of R3 and R5
- Very good approximation quality:
 - Symbol 0°: F-CoP_{total} = 97 %
 - Symbol 30°: F-CoP_{total} = 96 %

Methods Comparison

© 2021 ANSYS, Inc. / Confidential

Optimization

- Determination of correlations and interactions for better design understanding
- Transparent optics development process
- Particularly suitable for gaining a fundamental understanding of complex facts
- Solutions independent of experience
- Design selection in terms of performance potential and sensitivities for optimized and robust design at the same time
- Added information value with reduced number of designs → save computation time, resources and costs

Thank you

