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* Reliability and Failure Probabilities: Motivation and Challenges

* The Diplexer Example
* A Monte Carlo Reference Study
e Robustness Evaluation using Latin Hypercube Sampling
e Reliability Analysis with Fragility Surfaces
* A Bayesian Model for Failure Risk Analysis
e Application of the Bayesian Model to the Diplexer Case

e A Sensitivity Analysis of Failure Probabilities

e Summary and Outlook
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Reliability and Failure Probabilities

Reliability is key for safety and for robust optimized products
The key metric for reliability assessment is the probability of failure, which can be computed considering the variations,
tolerances of the input parameters. Failure is usually defined by limits.

Metamodels of failure probabilities require necessarily an estimation of the prediction quality

These metamodels can be helpful in the whole product lifecycle from the early phase (layout / manufacturing) to product
services (for example a product approaching failure limits during its lifetime)
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The Diplexer Example

Table 2. i istics and RF per (Tamb = 25 °C)

* Adiplexer is a passive device sharing a single communication —_— —— S ]Va'“‘ unk
N Min. Typ. Max.

channel for two separate frequency bands, in our case 2G and
5G bands e w0 [ s s

5 G band pass
r4 Nominal impedance 50 Q
Return loss All ports 17 dB
S21 2 G to antenna insertion loss 2400 to 2483.5 MHz 0.6 0.7 dB

S31 5 G to antenna insertion loss 4900 to 5850 MHz 06 0.7 dB

* 12 output responses with defined limit values: Aemanatn

H H H H H H S21 2 G to antenna attenuation 4900 to 5850 MHz 20 dB
Failure is defined either when a loss exceeds a limitor when an (& [ifcwmemen pmesowe [ 2 L L Lo
attenuation is too weak Bk Nl siidicn

5850 to 7000 MHz 15

S21 2 G to antenna attenuation 7000 to 9500 MHz ¥ dB
9800 to 10500 MHz 16

S31 5 G to antenna attenuation 9800 to 11650 MHz 1" dB

* From a previous sensitivity analysis, 4 geometric parameters
can impact the product performances:
Capa2, Meta2, BCB1, Meta1 Technology cross
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Numerical Model

2G to antenna transmission

» Electromagnetics physics = Ansys HFSS solver kv

» Parameterized geometric 3D model
» Variables : thicknesses, conductivities, permittivities

+ Enable parametric studies

» Simulation results show excellent
agreement with measurements

o 2 b 1] fo 2
Freq [GHz)

5G to antenna transmission

» Simulation statistics
» Elapsed time ~ 5 hours (8 cores)
* Memory ~ 25 Gb

— Measurements

» Abrute-force Monte Carlo simulation is not effective EmEisarekabubads

Y/ IR
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The Monte Carlo Reference Study

* 1000 simulations, 4 input parameters (geometric thicknesses BCB1, Capa2, Meta1b, Meta2)
» (Gaussian distributions based on manufacturing tolerances

» Designs failed either for max_S21_B5G (blue lines in Parallel Coordinate Plots) or for max_S21_Out_of B1
(red lines). Failure Rates 4.8% for max_S21_Out_of B1 and 1.9% for max_S21_B5G; Total Failure Rate is 6.7%.

» High Coefficient of Prognosis (CoP) for these output parameters l ‘
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Robustness Evaluation using Latin Hypercube Sampling

» 100 simulations using Latin Hypercube Design of Experiment instead of 1000 simulations
« Equivalent CoP, very similar MOPs

» Therefore, MOPs can be used for initial reliability analysis, verification can be done with the Latin hypercube sampling

Monte Carlo Sampling Latin Hypercube Sampling
Coefficient of P is = 89 % yper
oetticient o rtjgn05| ? Coefficient of Prognosis = 94 %
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Reliability with Fragility Surfaces

High quality MOP is used for analysis of failure probabilities
Fragility surfaces generated by varying the mean values of two important input parameters
Increasing mean value BCB1 reduces the failure probability (indicated by yellow arrow on fragility surface)

Verification with 5 mean value pairs and 100 simulation runs for each pair

Moving Least Squares approximation of Failure Rate
Coefficient of Prognosis = 99 %

=686
: Failure rate Failure rate
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Influence of increasing BCB1 on other critical output parameter

* First step running 100 Ansys HFSS simulations lead to 2 failures for B5G

* Adding further 50 simulations (using Adaptive MOP technique) leads to 2 additional failures for B5G

+ Total probability of failure using higher BCB1 mean value of 4.2 um is about half of the initial failure rate !

* More simulations are necessary or other smart methods to reduce the number of necessary simulations
and improve the prognosis quality

QUTPUT : §21_min

Fitted PDF - TRIANGULAR

ofITHa Histogram
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Bayesian interpolation

* Arandom field (Y,) e x is @ random function defined over a factor
space X € R?, d € N*
= A realization of a random field is a function Y.(w), indexed by
w € (Q,P) (sample space) a R

* The covariance of the random field fully defines the basis functions of
the function space for the realizations and therefore their properties :

regularity...
=2
N
¥
» The random field can be conditioned on N € N* observations =
(Yx, = i), _,,- t can be viewed as a learning process : I
realizations compatible with the observations are selected W
N—
x

» The conditioned random field can be used to interpolate an unknown
function g defined over X "

« g is supposed to be a realization of (Yy) xe x T g / \/\ 1

* Due to the finite information, several models are possible N ; \ i

e The randomness can be interpreted as a modeling uncertainty e \\ // . \ '*’/;
T~ <y e\ 2

mean, standard deviation ;
’ ’ o g o 0 o : = g 2
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“Failure probability” random variable

» Factor space (X, P), accident set A = [T, +oo[, interpolation model (Y,) xe x for an unknown function g

» Either p the failure probability, it can be written :

T“ ! T 5 T T - 4
X X 06 \\\ \ ) e \ \ la
SNy pw N\ A
g .y P / /’ \\\ \ [/,,:;’;,,»
+ The estimator p is obtained substituting g with Y, : U ‘ | | K il
X

pw) = f Iy (e AP(X)
X

» p and the stochastic process (Y,) ¢ x share the same randomness
= The model uncertainty is propagated

+ Adding data points reduces this uncertainty :

1$7] P
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“‘Risk-of-failure probability” random variable

To learn about the distribution of p is difficult
* The exact Bayesian inference of the posterior distribution of p is intractable

» Statistical inference from the analysis of realizations of p is unreasonable in practice, as it requires to simulate trajectories of the random field

The random variable p (risk-of-failure probability) is proposed as an alternative estimator

P@) = [ Toensa PG
X
It is numerically efficient, as it only requires the knowledge of marginal distributions

It stochastically dominates (in the convex order) the random variable p : p <., p
* They share the same mean value : E[p] = E[p]

* Bounds on the quantiles of # , more accurate than Markov bounds, 1 ra 1 1
can be derived from the quantile function F5* of 5 : —f Fﬁ_l(t) dt < Fﬁ_l(a) < 1—f Fﬁ_l(t) dt
a —-a
* From the inequalities above, one can easily derive credibility intervals for p 0 ¢

The multi-response case (K > 1) can be easily managed using the Fréchet upper bound

K K

P U vy®ea )< Z (v e 4)

k=1 k=1
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Design of experiments

* In order to increase the model accuracy, new observations are required

* As each data point is computationally expensive to get, they should be carefully
chosen to maximize the information obtained

* They are selected using a Stepwise Uncertainty Reduction (SUR) strategy

Lys
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Intended to reduce the uncertainty on the estimation of p
The design of experiment, of size N, is enriched sequentially
A cost function J;, based on var[p], is minimized to identify the optimal candidate (xy+1, Yn+1)

Global optimization is performed using a genetic algorithm

(Y,\' | (yl’i = yl)lszsN)xex

95%-confidence interval
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Gradient-enhanced Bayesian interpolation

Without derivatives

12 -

» HFSS solver is based on the transfinite element method

- 7/ Py
* The gradient of the S-parameters is a by-product of the simulation \ // \\ /\
/ N7 \

\ 1

« ltis not a finite-difference approximation (that would be computationally -
expensive to get for a high-dimensional factor space X) sl )\\ 2 P \ //;
a \ g o \ | e
« Arandom field can also be conditioned on the gradients ’ ' /A Z

obtained at the observation points (VY,, = Yi)1<i<1v (el (O = ), ).

95%-confidence interval

« This additional information is a manna ! With derivatives
+ ltincreases the quality of the predictions " /1\
* The selection process is more stringent " / \ / \
= The predictive uncertainty is significantly reduced \\ / ’/ \_\
Sy S/
s “\\\ J g \ ///
ﬂ AN ‘ ‘ ‘ SN

(Y,r ‘ (y,r,- =yiN ﬁy,r,- = ]/I.)

1515N)XEK
‘ ” 95%-confidence interval
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We consider the following illustrative example :

R—R T = 1.05
9 x> (0.4x — 0.3)2 + ¢~ 11%* 4 o=5(x-0.8)? o

A sequential design of experiments is built using the SUR strategy

Convergence of the results are compared, without and with derivatives
= The derivative information significantly improves the predictions

fix = N(0.5,0.42)

Without derivatives With derivatives

Probability of failure

Toy model

Number of simulations

Number of simulations
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Extremal responses

* The product datasheet bears upon the modules |Sl-j| of the S-parameters S;; over 1000
specific frequency ranges Fy = [frgfr)t ,,(ffl)x] 1<k<K
g-:mm’
+ We consider the restrictions of |S;;| to Fi : (x, f) = gi(x, ) = |Sijl#, (%, )| :
» It can be assigned to each function g, an accident set 4y, : s’
specification k is not met when g, € A, oo
* In case the accident set 4, is connected, it is possible simplify the problem excluding o a0 - F,.Z"‘ffm,] " o 1200
the frequency parameter from the analysis, by introducing extremal responses 50
Ak
Gk = }Ié%);[gk(l f)] 75

* We have established the following result :

-125

* Gy is differentiable almost everywhere on X
= It can be reasonably represented with a differentiable random field

dB(S(Port1,Portz))

ek

-15.0

* An explicit expression for the gradient ﬁGk has been derived

175

r f(/c) (k)
” o i) ‘ Jmax 16

T T T T T T
700 725 750 775 800 825 850 875 900 925 950
lite.augmented Freq [GHz]




Failure risk analysis

* Modeling flow for the GoNoGo application

Process dispersion : Product specifications :
Probability laws Inequalities

Model construction : Membership distribution :

Input data : Failure risk / Yield :
» Extremal responses « Fréchet-Boole upper bound

« Factors + Responses * Mean value
» Random field interpolation * Monte Carlo simulation

« Experiments, simulations « Confidence interval
« Gradient-enhanced Bayesian inference « Stochastic dominance

Design of Experiments :

Experiments « Stepwise Uncertainty Reduction No Precision is

set + Global optimization (genetic algorithm) ) satisfactory

« Clustering algorithms

Lys
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Application to the diplexer case

25% P
Without derivatives I
* ABrute-Force Monte-Carlo simulation is performed as a reference : 2a0% o
« 1000 samples E o=
+ Duration ~ 1 month g 1% .
*  Failure Probability estimation : E L1
E[Pucl = 6.7%, Pyc € [4.15%, 8.25%)] (95% confidence interval) ‘m% et
B % et e
+ Uncertainty propagation is crucial to assess the model quality for the quantity of interest 77777
0%
50 60 70 80 90 100
+ Using the gradient information drastically improve the prediction capabilities of the model : umber f HESS simlations
+ 100 samples 10%
*  Failure Probability estimation : 9%

E[p] =7.33%, P € [6.77%,7.95%] (95% confidence interval)

* The number of simulations required to (significantly) outperform the Monte-Carlo
confidence interval is (at least) an order of magnitude lower

Estimation of the probability of failure
S

r " With derivatives
o
' ’ 50 60 70 80 % 100

life.augmented Number of HFSS simulations



Threshold dependence of the failure probability

satropic Kriging agproximation ;rrarga;‘nausr‘: _Probabilty_GoNoGo_100
Table 2. Electrical ics and RF (Tamb = 25 °C)
Value
Symbol Parameter Test condition Unit
win. [ Typ. | ax.
Pass band
; 2 G band pass 2400 24835 | MHz o
5G band pass 4900 5850 | MHz °—:L
z Nominal impedance 50 Q .3 0.8

Return loss All ports 17 dB o
s21 2G to antenna insertion loss | 2400 to 2483.5 MHz 06 | o7 | @8 % \
S31 5 G to antenna insertion loss | 4900 to 5850 MHz 06 07 dB A 0.6 1
= \
Attenuation < \
DS \
s21 2 G to antenna attenuation [4900 to 5850 MHz 20 [ [ a8 Q04 \‘
s31 |5 to antenna attenuation [240010 2483.5 MHz 18 | [ a8 % \

Out of band attenuation °
=
5850 to 7000 MHz 15 =]
s21 2G to antenna attenuation 7000 to 9500 MHz 7 B -
9800 to 10500 MHz 16 0.085,
s31 5G to antenna attenuation 9800 to 11650 MHz 11 dB

o

0.0 =
Thres 0.1
holg 57 0.105
|_S2; 0.2
_B5g

» The datasheet can be optimized, with a yield constraint, by testing different threshold values
» This leads to different failure probabilities for the same input parameter distributions

» Using the precise failure probabilities calculated with GoNoGo and coupling to optiSLang makes this
type of study simple

Lys

life.augmented

19



Summary and outlook

+ Reliability analysis including the prediction of failure probabilities is nowadays feasible:
* Methods and algorithms to reduce the number of necessary simulations are key
» The MOP can be used to build fragility surfaces to understand the transition region in parameter space
« \Verification, especially in the transition region from failure to non failure, is important
* Ansys HFSS derivatives, using a rigorous Bayesian inference framework, can be used for an improved quality
for the prediction of failure probabilities
* Coupling GoNoGo with optiSLang enables to study for example the impact of the threshold value
+ These methods can be very helpful for the reduction of the production yield losses and for the
adaptation to specific requirements
+ For many parameters, an automation process like outlined below will be helpful

> » [ Optimization »
»y PO i» ﬁ‘\'?’ »: ] — > @ P @

13
| | = =
Cail_‘GoNoéu,py MOP M(l)F SD'\:H }_‘ » ﬂ > ) Append designs Reliability Postprocessing
» —$~ Re\Tahlhty Check with GoNoGo

[ %
ot o
Postprocessing (_—)

Filter designs

Outline for a future approach of the optimization for the production yield

Kyy 20
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Thank you very much for your attention!



