Reliability Analysis of a Diplexer with Improved Quality for the Prediction of Failure Probabilities

Philippe Leduc – STMicroelectronics Peter Krenz, Roland Niemeier – Ansys

Agenda

- Reliability and Failure Probabilities: Motivation and Challenges
- The Diplexer Example
 - A Monte Carlo Reference Study
 - Robustness Evaluation using Latin Hypercube Sampling
 - Reliability Analysis with Fragility Surfaces
 - A Bayesian Model for Failure Risk Analysis
 - Application of the Bayesian Model to the Diplexer Case
 - A Sensitivity Analysis of Failure Probabilities
- Summary and Outlook

Reliability and Failure Probabilities

- Reliability is key for safety and for robust optimized products
- The key metric for reliability assessment is the probability of failure, which can be computed considering the variations, tolerances of the input parameters. Failure is usually defined by limits.
- · Metamodels of failure probabilities require necessarily an estimation of the prediction quality
- These metamodels can be helpful in the whole product lifecycle from the early phase (layout / manufacturing) to product services (for example a product approaching failure limits during its lifetime)

e Edit Design Options Tr	ools		
Failure Model : Set	ie 🔻		Define
Confidence Level : 0.9	5		Model
Monte Carlo Preferential Method :	Yes	Ī	Enter Data
Convergence Threshold :	0.002		Yield
Packet Size :	10000		Influence
Initial Stake Factor :	10		Design
Maximum Number Packets :	500		
Minimum Converged Passes :	2		Pup

The Diplexer Example

- A diplexer is a passive device sharing a single communication channel for two separate frequency bands, in our case 2G and 5G bands
- 12 output responses with defined limit values: Failure is defined either when a loss exceeds a limit or when an attenuation is too weak
- From a previous sensitivity analysis, 4 geometric parameters can impact the product performances: Capa2, Meta2, BCB1, Meta1

Table 2. Electrical characteristics and RF performance (T_{amb} = 25 °C)

Symbol Para	Parameter	Test condition				Unit
	Faranteter		Min.	Typ.	Max.	onne
		Pass band				
	2 G band pass		2400		2483.5	MHz
	5 G band pass		4900		5850	MHz
Z	Nominal impedance			50		Ω
Return loss		All ports			-17	dB
S21	2 G to antenna insertion loss	2400 to 2483.5 MHz		0.6	0.7	dB
S31	5 G to antenna insertion loss	4900 to 5850 MHz		0.6	0.7	dB
		Attenuation				
S21	2 G to antenna attenuation	4900 to 5850 MHz	20			dB
S31	5 G to antenna attenuation	2400 to 2483.5 MHz	18			dB
	c	Out of band attenuation				
		5850 to 7000 MHz	15			
S21	2 G to antenna attenuation	7000 to 9500 MHz	7			dB
		9800 to 10500 MHz	16			1
S31	5 G to antenna attenuation	9800 to 11650 MHz	11			dB

Value

Numerical Model

- Electromagnetics physics ⇒ Ansys HFSS solver
- Parameterized geometric 3D model
 - · Variables : thicknesses, conductivities, permittivities
 - Enable parametric studies
- Simulation results show excellent agreement with measurements
- · Simulation statistics
 - Elapsed time ~ 5 hours (8 cores)
 - Memory ~ 25 Gb
- A brute-force Monte Carlo simulation is not effective

Freg (GHz

Measurements

HFSS simulation

The Monte Carlo Reference Study

- 1000 simulations, 4 input parameters (geometric thicknesses BCB1, Capa2, Meta1b, Meta2)
- · Gaussian distributions based on manufacturing tolerances
- Designs failed either for max_S21_B5G (blue lines in Parallel Coordinate Plots) or for max_S21_Out_of_B1 (red lines). Failure Rates 4.8% for max_S21_Out_of_B1 and 1.9% for max_S21_B5G; Total Failure Rate is 6.7%.
- · High Coefficient of Prognosis (CoP) for these output parameters

Robustness Evaluation using Latin Hypercube Sampling

- · 100 simulations using Latin Hypercube Design of Experiment instead of 1000 simulations
- Equivalent CoP, very similar MOPs
- Therefore, MOPs can be used for initial reliability analysis, verification can be done with the Latin hypercube sampling

Reliability with Fragility Surfaces

- · High quality MOP is used for analysis of failure probabilities
- · Fragility surfaces generated by varying the mean values of two important input parameters
- Increasing mean value BCB1 reduces the failure probability (indicated by yellow arrow on fragility surface)
- Verification with 5 mean value pairs and 100 simulation runs for each pair

BCB1	Capa2	Failure rate (explicit simulations)	Failure rate (fragility surface)
3.41	170.08	57 %	62.5 %
4.09	168.52	60 %	58.8 %
2.50	177.50	7 %	12.5 %
4.20	174.00	0 %	0.3 %
3.80	174.00	1 %	1.7 %

Moving Least Squares approximation of Failure Rate Coefficient of Prognosis = 99 %

Influence of increasing BCB1 on other critical output parameter

- First step running 100 Ansys HFSS simulations lead to 2 failures for B5G
- Adding further 50 simulations (using Adaptive MOP technique) leads to 2 additional failures for B5G
- Total probability of failure using higher BCB1 mean value of 4.2 μm is about half of the initial failure rate !
- More simulations are necessary or other smart methods to reduce the number of necessary simulations and improve the prognosis quality

Bayesian interpolation

- A random field (Y_x) _{x∈ X} is a random function defined over a factor space X ⊆ ℝ^d, d ∈ N*
 - ⇒ A realization of a random field is a function $Y(\omega)$, indexed by $\omega \in (\Omega, \mathbb{P})$ (sample space)
- The covariance of the random field fully defines the basis functions of the function space for the realizations and therefore their properties : regularity...
- The random field can be conditioned on N ∈ N* observations (Y_{xi} = yi)_{1≤i≤N}. It can be viewed as a learning process : realizations compatible with the observations are selected
- The conditioned random field can be used to interpolate an unknown function g defined over \mathbb{X}
 - g is supposed to be a realization of $(Y_x)_{x \in \mathbb{X}}$
 - Due to the finite information, several models are possible
 - The randomness can be interpreted as a modeling uncertainty

"Failure probability" random variable

- Factor space (X, P), accident set $A = [T, +\infty[$, interpolation model $(Y_x)_{x \in X}$ for an unknown function g
- Either *p* the failure probability, it can be written :

$$p = \int_{\mathbb{X}} \mathbb{I}_{g(\mathbf{x}) \in \mathbf{A}} d\mathbf{P}(\mathbf{x}) = \int_{\mathbb{X}} \mathbb{I}_{g(\mathbf{x}) \geq \mathbf{T}} f_{\mathbb{X}}(\mathbf{x}) d\mathbf{x}$$

• The estimator \hat{p} is obtained substituting g with Y_x :

$$\hat{p}(\omega) = \int_{\mathbb{X}} \mathbb{I}_{Y_{\boldsymbol{x}}(\omega) \in \boldsymbol{A}} d\boldsymbol{P}(\boldsymbol{x})$$

- *p̂* and the stochastic process (*Y_x*) _{*x*∈ X} share the same randomness
 ⇒ The model uncertainty is propagated
- · Adding data points reduces this uncertainty :

"Risk-of-failure probability" random variable

- To learn about the distribution of \hat{p} is difficult
 - The exact Bayesian inference of the posterior distribution of \hat{p} is intractable
 - Statistical inference from the analysis of realizations of \hat{p} is unreasonable in practice, as it requires to simulate trajectories of the random field
- The random variable \tilde{p} (risk-of-failure probability) is proposed as an alternative estimator

$$\tilde{p}(\alpha) = \int_{\mathbb{X}} \mathbb{I}_{\mathbb{P}(Y_{\mathbf{x}} \in A) \ge \alpha} d\mathbf{P}(\mathbf{x})$$

- It is numerically efficient, as it only requires the knowledge of marginal distributions
- It stochastically dominates (in the convex order) the random variable \hat{p} : $\hat{p} \leq_{cx} \tilde{p}$
 - They share the same mean value : $E[\hat{p}] = \mathbb{E}[\hat{p}]$

$$\frac{1}{\alpha} \int_0^{\alpha} F_{\tilde{p}}^{-1}(t) \, dt \le F_{\tilde{p}}^{-1}(\alpha) \le \frac{1}{1-\alpha} \int_{\alpha}^1 F_{\tilde{p}}^{-1}(t) \, dt$$

- From the inequalities above, one can easily derive credibility intervals for \hat{p}
- The multi-response case (K > 1) can be easily managed using the Fréchet upper bound

$$\mathbb{P}\left(\bigcup_{k=1}^{K} Y_{x}^{(k)} \in A_{k}\right) \leq \sum_{k=1}^{K} \mathbb{P}\left(Y_{x}^{(k)} \in A_{k}\right)$$

Design of experiments

- · In order to increase the model accuracy, new observations are required
- As each data point is computationally expensive to get, they should be carefully chosen to maximize the information obtained
- · They are selected using a Stepwise Uncertainty Reduction (SUR) strategy
 - Intended to reduce the uncertainty on the estimation of \hat{p}
 - The design of experiment, of size N, is enriched sequentially
 - A cost function $J_{\tilde{p}}$, based on $var[\tilde{p}]$, is minimized to identify the optimal candidate (x_{N+1}, y_{N+1})
 - Global optimization is performed using a genetic algorithm

Gradient-enhanced Bayesian interpolation

- · HFSS solver is based on the transfinite element method
 - · The gradient of the S-parameters is a by-product of the simulation
 - It is not a finite-difference approximation (that would be computationally expensive to get for a high-dimensional factor space X)
- A random field can also be conditioned on the gradients obtained at the observation points (V
 _{xi} = γ_i)_{1 ≤ i ≤ N}
- · This additional information is a manna !
 - It increases the quality of the predictions
 - The selection process is more stringent ⇒ The predictive uncertainty is significantly reduced

Without derivatives

With derivatives

Toy model

• We consider the following illustrative example :

$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto (0.4x - 0.3)^2 + e^{-11x^2} + e^{-5(x - 0.8)^2} \end{cases} \qquad T = 1.05 \qquad f_{\mathbb{X}} = \mathcal{N}(0.5, 0.4^2)$$

- A sequential design of experiments is built using the SUR strategy
- Convergence of the results are compared, without and with derivatives ⇒ The derivative information significantly improves the predictions

- The product datasheet bears upon the modules $|S_{ij}|$ of the S-parameters S_{ij} over specific frequency ranges $\mathcal{F}_k = \left[f_{min}^{(k)}, f_{max}^{(k)}\right], 1 \le k \le K$
- We consider the restrictions of $|S_{ij}|$ to $\mathcal{F}_k : (\mathbf{x}, f) \mapsto g_k(\mathbf{x}, f) = |S_{ij}|_{\mathcal{F}_k}(\mathbf{x}, f)|$
- It can be assigned to each function g_k an accident set A_k : specification k is not met when g_k ∈ A_k
- In case the accident set *A_k* is connected, it is possible simplify the problem excluding the frequency parameter from the analysis, by introducing extremal responses
 - $G_k = \max_{f \in \mathcal{F}_k} [g_k(\cdot, f)]$
- · We have established the following result :
 - G_k is differentiable almost everywhere on \mathbb{X} \Rightarrow It can be reasonably represented with a differentiable random field
 - An explicit expression for the gradient $\vec{\nabla}G_k$ has been derived

Extremal responses

Failure risk analysis

Modeling flow for the GoNoGo application

Application to the diplexer case

- A Brute-Force Monte-Carlo simulation is performed as a reference :
 - 1000 samples
 - Duration ~ 1 month
 - Failure Probability estimation : $E[\hat{p}_{MC}] = 6.7\%, \hat{p}_{MC} \in [4.15\%, 8.25\%]$ (95% confidence interval)
- · Uncertainty propagation is crucial to assess the model quality for the quantity of interest
- · Using the gradient information drastically improve the prediction capabilities of the model :
 - 100 samples
 - Failure Probability estimation : $E[\hat{p}] = 7.33\%, \hat{p} \in [6.77\%, 7.95\%]$ (95% confidence interval)
- The number of simulations required to (significantly) outperform the Monte-Carlo confidence interval is (at least) an order of magnitude lower

Threshold dependence of the failure probability

Symbol Parameter	Descentes	Test condition	Value			
	Parameter		Min.	Typ.	Max.	Unit
		Pass band				
	2 G band pass		2400		2483.5	MHz
5 G band pass		4900		5850	MHz	
Z	Nominal impedance			50		Ω
Return loss		All ports			-17	dB
S21	2 G to antenna insertion loss	2400 to 2483.5 MHz		0.6	0.7	dB
S31	5 G to antenna insertion loss	4900 to 5850 MHz		0.6	0.7	dB
		Attenuation				
S21	2 G to antenna attenuation	4900 to 5850 MHz	20			dB
S31	5 G to antenna attenuation	2400 to 2483.5 MHz	18			dB
	c	Out of band attenuation				
S21 2 G to antenna attenuation	5850 to 7000 MHz	15				
	7000 to 9500 MHz	7			dB	
	9800 to 10500 MHz	16			1	
S31	5 G to antenna attenuation	9800 to 11650 MHz	11			dB

Electrical characteristics and RF performance (Tamb = 25 °C)

Table 2.

Failure_Probability_Co.No.0.4 0.0850.090.0950.1 0.1050.2 0.0.16_0VL_01 Threshold_S21_856_0.7 model_S21_856_0.7 model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21_856_0.7\\model_S21

Isotropic Kriging approximation of Failure_Probability_GoNoGo_100 Coefficient of Prognosis = 96 %

- The datasheet can be optimized, with a yield constraint, by testing different threshold values
- This leads to different failure probabilities for the same input parameter distributions
- Using the precise failure probabilities calculated with GoNoGo and coupling to optiSLang makes this type of study simple

Summary and outlook

- Reliability analysis including the prediction of failure probabilities is nowadays feasible:
 - · Methods and algorithms to reduce the number of necessary simulations are key
 - The MOP can be used to build fragility surfaces to understand the transition region in parameter space
 - · Verification, especially in the transition region from failure to non failure, is important
 - Ansys HFSS derivatives, using a rigorous Bayesian inference framework, can be used for an improved quality for the prediction of failure probabilities
 - · Coupling GoNoGo with optiSLang enables to study for example the impact of the threshold value
- These methods can be very helpful for the reduction of the production yield losses and for the adaptation to specific requirements
- For many parameters, an automation process like outlined below will be helpful

Outline for a future approach of the optimization for the production yield

Thank you very much for your attention!

