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• Reliability is key for safety and for robust optimized products

• The key metric for reliability assessment is the probability of failure, which can be computed considering the variations, 
tolerances of the input parameters. Failure is usually defined by limits.

• Metamodels of failure probabilities require necessarily an estimation of the prediction quality

• These metamodels can be helpful in the whole product lifecycle from the early phase (layout / manufacturing) to product 
services (for example a product approaching failure limits during its lifetime)

Reliability and Failure Probabilities
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The Diplexer Example

• A diplexer is a passive device sharing a single communication 
channel for two separate frequency bands, in our case 2G and 
5G bands

• 12 output responses with defined limit values:
Failure is defined either when a loss exceeds a limit or when an 
attenuation is too weak

• From a previous sensitivity analysis, 4 geometric parameters 
can impact the product performances:
Capa2, Meta2, BCB1, Meta1 Technology cross 

section



Numerical Model

• Electromagnetics physics  Ansys HFSS solver

• Parameterized geometric 3D model

• Variables : thicknesses, conductivities, permittivities

• Enable parametric studies

• Simulation results show excellent
agreement with measurements

• Simulation statistics

• Elapsed time ~ 5 hours (8 cores)

• Memory ~ 25 Gb

• A brute-force Monte Carlo simulation is not effective  Measurements
HFSS simulation

2G to antenna transmission

5G to antenna transmission
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• 1000 simulations, 4 input parameters (geometric thicknesses BCB1, Capa2, Meta1b, Meta2)

• Gaussian distributions based on manufacturing tolerances

• Designs failed either for max_S21_B5G (blue lines in Parallel Coordinate Plots) or for max_S21_Out_of_B1
(red lines). Failure Rates 4.8% for max_S21_Out_of_B1 and 1.9% for max_S21_B5G; Total Failure Rate is 6.7%.

• High Coefficient of Prognosis (CoP) for these output parameters

The Monte Carlo Reference Study
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• 100 simulations using Latin Hypercube Design of Experiment instead of 1000 simulations

• Equivalent CoP, very similar MOPs

• Therefore, MOPs can be used for initial reliability analysis, verification can be done with the Latin hypercube sampling

Robustness Evaluation using Latin Hypercube Sampling 



Reliability with Fragility Surfaces
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• High quality MOP is used for analysis of failure probabilities 

• Fragility surfaces generated by varying the mean values of two important input parameters

• Increasing mean value BCB1 reduces the failure probability (indicated by yellow arrow on fragility surface)

• Verification with 5 mean value pairs and 100 simulation runs for each pair

BCB1 Capa2
Failure rate

(explicit 
simulations)

Failure rate
(fragility surface)

3.41 170.08 57 % 62.5 %

4.09 168.52 60 % 58.8 %

2.50 177.50 7 % 12.5 %

4.20 174.00 0 % 0.3 %

3.80 174.00 1 % 1.7 %
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• First step running 100 Ansys HFSS simulations lead to 2 failures for B5G

• Adding further 50 simulations (using Adaptive MOP technique) leads to 2 additional failures for B5G

• Total probability of failure using higher BCB1 mean value of 4.2 m is about half of the initial failure rate !

• More simulations are necessary or other smart methods to reduce the number of necessary simulations 
and improve the prognosis quality

Influence of increasing BCB1 on other critical output parameter



• A random field 𝑌𝒙  𝒙∈ 𝕏 is a random function defined over a factor 
space 𝕏 ⊆ ℝ , 𝑑 ∈ ℕ∗

 A realization of a random field is a function 𝑌⋅ 𝜔 , indexed by
𝜔 ∈ Ω, ℙ (sample space)

• The covariance of the random field fully defines the basis functions of 
the function space for the realizations and therefore their properties : 
regularity…

• The random field can be conditioned on 𝑁 ∈ ℕ∗ observations  
𝑌𝒙 = 𝑦 . It can be viewed as a learning process :

realizations compatible with the observations are selected

• The conditioned random field can be used to interpolate an unknown 
function 𝑔 defined over 𝕏

• 𝑔 is supposed to be a realization of 𝑌𝒙  𝒙∈ 𝕏

• Due to the finite information, several models are possible

• The randomness can be interpreted as a modeling uncertainty

Bayesian interpolation 
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• Factor space 𝕏, 𝑷 , accident set 𝐴 = 𝑇, +∞ , interpolation model 𝑌𝒙  𝒙∈ 𝕏 for an unknown function 𝑔

• Either 𝑝 the failure probability, it can be written :

• The estimator �̂� is obtained substituting 𝑔 with 𝑌𝒙 :

• �̂� and the stochastic process 𝑌𝒙  𝒙∈ 𝕏 share the same randomness
 The model uncertainty is propagated

• Adding data points reduces this uncertainty :

“Failure probability” random variable
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More observations …

𝕏

𝑓𝕏

𝑔

𝑌𝒙 𝜔

𝑇 𝐴

𝑝 𝜔

𝑝 = 𝕀 𝒙 ∈  𝑑𝑷 𝒙
𝕏

= 𝕀  𝑓𝕏 𝒙 𝑑𝒙
𝕏

�̂�



�̂� 𝜔 = 𝕀
𝒙 ∈  𝑑𝑷 𝒙

𝕏



�̂�



• To learn about the distribution of �̂� is difficult

• The exact Bayesian inference of the posterior distribution of 𝑝 is intractable

• Statistical inference from the analysis of realizations of 𝑝 is unreasonable in practice, as it requires to simulate trajectories of the random field

• The random variable 𝑝 (risk-of-failure probability) is proposed as an alternative estimator

• It is numerically efficient, as it only requires the knowledge of marginal distributions

• It stochastically dominates (in the convex order) the random variable �̂� : �̂� ≤ 𝑝

• They share the same mean value : 𝑬 𝑝 = 𝔼 𝑝

• Bounds on the quantiles of 𝑝 , more accurate than Markov bounds,
can be derived from the quantile function 𝐹 of 𝑝 :

• From the inequalities above, one can easily derive credibility intervals for 𝑝

• The multi-response case 𝐾 > 1 can be easily managed using the Fréchet upper bound

“Risk-of-failure probability” random variable
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• In order to increase the model accuracy, new observations are required

• As each data point is computationally expensive to get, they should be carefully 
chosen to maximize the information obtained

• They are selected using a Stepwise Uncertainty Reduction (SUR) strategy
• Intended to reduce the uncertainty on the estimation of 𝑝

• The design of experiment, of size 𝑁, is enriched sequentially

• A cost function 𝐽 , based on var 𝑝 , is minimized to identify the optimal candidate 𝒙 , 𝑦

• Global optimization is performed using a genetic algorithm

Design of experiments
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• HFSS solver is based on the transfinite element method
• The gradient of the S-parameters is a by-product of the simulation

• It is not a finite-difference approximation (that would be computationally 
expensive to get for a high-dimensional factor space 𝕏)

• A random field can also be conditioned on the gradients 
obtained at the observation points ∇𝑌𝒙 = 𝜸

• This additional information is a manna !
• It increases the quality of the predictions

• The selection process is more stringent
 The predictive uncertainty is significantly reduced

Gradient-enhanced Bayesian interpolation
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• We consider the following illustrative example :

• A sequential design of experiments is built using the SUR strategy

• Convergence of the results are compared, without and with derivatives
 The derivative information significantly improves the predictions

Toy model
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Without derivatives With derivatives

Number of simulations Number of simulations
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𝑇 = 1.05 𝑓𝕏 = 𝒩 0.5, 0.4𝑔 ∶
𝑥 ⟼ 0.4𝑥 − 0.3 + 𝑒 + 𝑒 .

ℝ ⟶ ℝ



• The product datasheet bears upon the modules 𝑆 of the S-parameters 𝑆 over 

specific frequency ranges ℱ = 𝑓 , 𝑓 , 1 ≤ 𝑘 ≤ 𝐾

• We consider the restrictions of 𝑆  to ℱ  : 𝒙, 𝑓 ↦ 𝑔 𝒙, 𝑓 = 𝑆 |ℱ 𝒙, 𝑓

• It can be assigned to each function 𝑔 an accident set 𝐴 :
specification 𝑘 is not met when 𝑔 ∈ 𝐴

• In case the accident set 𝐴 is connected, it is possible simplify the problem excluding 
the frequency parameter from the analysis, by introducing extremal responses

• We have established the following result :

• 𝐺 is differentiable almost everywhere on 𝕏
 It can be reasonably represented with a differentiable random field

• An explicit expression for the gradient 𝛻𝐺 has been derived

Extremal responses
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• Modeling flow for the GoNoGo application

Failure risk analysis
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Model construction :

• Extremal responses 

• Random field interpolation

• Gradient-enhanced Bayesian inference

Membership distribution :

• Fréchet-Boole upper bound

• Monte Carlo simulation 

• Stochastic dominance

Product specifications :

Inequalities

Input data :

• Factors + Responses

• Experiments, simulations

Failure risk / Yield :

• Mean value

• Confidence interval

Precision is
satisfactory ?

Experiments 
set

Yes

Start

End

No

Process dispersion :

Probability laws

Design of Experiments : 

• Stepwise Uncertainty Reduction

• Global optimization (genetic algorithm)

• Clustering algorithms 



• A Brute-Force Monte-Carlo simulation is performed as a reference :

• 1000 samples

• Duration ~ 1 month

• Failure Probability estimation :
𝑬 𝒑𝑴𝑪 = 𝟔. 𝟕%, 𝒑𝑴𝑪 ∈ 𝟒. 𝟏𝟓%, 𝟖. 𝟐𝟓% (95% confidence interval)

• Uncertainty propagation is crucial to assess the model quality for the quantity of interest

• Using the gradient information drastically improve the prediction capabilities of the model :

• 100 samples

• Failure Probability estimation :
𝑬 𝒑 = 𝟕. 𝟑𝟑%, 𝒑 ∈ 𝟔. 𝟕𝟕%, 𝟕. 𝟗𝟓% (95% confidence interval)

• The number of simulations required to (significantly) outperform the Monte-Carlo 
confidence interval is (at least) an order of magnitude lower

Application to the diplexer case
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Without derivatives

With derivatives



• The datasheet can be optimized, with a yield constraint, by testing different threshold values
• This leads to different failure probabilities for the same input parameter distributions
• Using the precise failure probabilities calculated with GoNoGo and coupling to optiSLang makes this 

type of study simple

Threshold dependence of the failure probability
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• Reliability analysis including the prediction of failure probabilities is nowadays feasible:
• Methods and algorithms to reduce the number of necessary simulations are key
• The MOP can be used to build fragility surfaces to understand the transition region in parameter space
• Verification, especially in the transition region from failure to non failure, is important
• Ansys HFSS derivatives, using a rigorous Bayesian inference framework, can be used for an improved quality 

for the prediction of failure probabilities
• Coupling GoNoGo with optiSLang enables to study for example the impact of the threshold value

• These methods can be very helpful for the reduction of the production yield losses and for the 
adaptation to specific requirements

• For many parameters, an automation process like outlined below will be helpful

Summary and outlook
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Outline for a future approach of the optimization for the production yield
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