

Ansys WOST Conference **Parametric geometry optimization of solids processing equipments**

///////// rakulan.sivanesapillai@bayer.com

Bayer AG Engineering & Technology Formulation & Processing Technologies

Motivation

Optimization of Solids Processing Equipments

Solids Processing

Processes which involve handling of bulk solids (powders, seeds, tablets) ubiquitous in Life Sciences.

Process / equipment design and optimization non-trivial.

Multi-factorial design space

Variable particle properties and bulk rheology

// Lack of useful in-process data / sensors.

Discrete Element Modeling

// Computational method to model behavior of bulk solids by computing

$$\mathbf{a}_{\mathbf{i}} = \sum \mathbf{F}_{ij} \qquad \mathbf{F} = f(\mathbf{r}_{ij}, \mathbf{v}_{ij}, \dots)$$

m

for up to millions of particles.

- // Increasing adoption to industrial scale processes due to GPU acceleration.
- // Useful tool to gather process insights.

Effect

Challenge

- // Process and equipment geometry optimization using DEM difficult due to computational costs for each design evaluation.
- // Simulation workflows contain multiple nodes (CAD, DEM solver, post-processing)
- // Potential solution with OptiSLang
 - // Process automation
 - // Surrogate modeling
 - // Optimization using surrogate model

Project Examples

Seed Processing Equipments

Cotton Seed Reactor Process Optimization

World-scale continuous cotton seed delinting plant.

Chemical Delinting = Removal of cellulose linters

Øptimize seed residence-time distribution in a rotating-drum reactor.

Seed Treater Design Optimization

Seed treating : Coating of seeds with layer of active ingredients and exipients to protect seed during early germination.

Software toolbox

Parametric CAD using SpaceClaim scripting. Geometry discretization

DEM solver Post processing using python scripting

Process automation Sensitivity studies Surrogate modeling Optimization

Process automation

(OptiSLang parametric system)

Cotton Seed Delinting

Optimization of Residence Time Distribution in Rotating Drum Reactor

- 10 t/h seed throughput with heated air for drying / reaction enthalpy.
- Residence time distribution (RTD) depends on large set of factors, e.g. throughput, rotation speed, air flow rate, …
- // Desirable mean residence known.Minimization of sd(RTD) goal.
- Ø Operational plant. Interest to minimize downtime for testing.

Cross-section Velocity distribution

Optimization Problem

CFD-DEM provides good prediction for residence time distribution (RTD). Mean residence time typically in the order of 30 – 60 mins.

Regression using nCSTR model possible

- τ ... Mean residence time n ... Tanks in series
 - Fig. : Effect of increasing n

Øptimization problem: Find design with narrow RTD (maximize n) and desired mean residence time.

$$\min_{D}\left[\frac{1}{n},(\tau-\tau_{Set})^{2}\right]$$

- Given significant cost of model evaluation process automation and surrogate modeling necessary.
- Ø Optimization problem solved using OptiSLang
 - Latin hypercube sampling to explore design space (7 dim.)
 - Surrogate modeling using Kriging kernel functions
 - // Global optimization using particle swarm optimizer

Surrogate model provides predictions comparable to mechanistic model.
and relative importance of factors (Coefficient of prognosis matrix)

Multi-objective particle swarm optimization provides a Pareto front along which at least one objective is minimal.

// RTD comparison of predicted baseline and selected Pareto optium.

- Major learning on design limits: No narrower RTD possible without significantly reducing MRT.
- Model predictions validated on production scale.

Fig.: Production scale validation

7 /// Bayer 16:9 Template /// June 2018

Seed Processing Equipments

Cotton Seed Reactor Process Optimization

World-scale continuous cotton seed delinting plan

Chemical Delinting = Removal of cellulose linters

Optimize seed residence-time distribution in a rotating-drum reactor.

Seed Treater Design Optimization

Seed treating : Coating of seeds with layer of active ingredients and excipients to protect seed during early germination.

Seed Treater Design Optimization

Root Cause Analysis

Summary

- // DEM able to provide insights into "black-box" solids processes.
- // Process automation and surrogate modeling using OptiSLang a feasible approach to solve optimization problems in solids processing.
- // Significant time and cost savings compared to physical trial-and-error experimentation.

Thank you ! Questions ?

rakulan.sivanesapillai@bayer.com