Smart Filter Element Development Creating ML & optimization based tools provided as webservices

Dr. Thomas Gose Dr. Christoph Schulz WOST 2022; Weimar June 24th

Leadership in Filtration

MANN+HUMMEL Speaker Introduction

Dr. Christoph Schulz Manager Simulation Filter Elements christoph.schulz@mann-hummel.com

- Diploma Aeronautics and Astronautics, University of Stuttgart
- PhD at Institute of Aerodynamics and Gas Dynamics, University of Stuttgart
 - Numerical Simulation of Atmospheric Boundary Layers and their Interaction with Wind Turbines
- Joined MANN+HUMMEL 2018
 - Simulation Engineer
 - Product Owner & Product Expert
 - Manager Simulation Filter Elements

MANN+HUMMEL Speaker Introduction

Dr. Thomas Gose Simulation Engineer Simulation Filter Elements thomas.gose@mann-hummel.com

3

June 24th Smart Filter Element Development Creating ML & optimization based tools provided as webservices

- Graduated in Chemical Engineering at the University of Stuttgart
- PhD thesis at the Fraunhofer IGB / IGVT University of Stuttgart
- Joined MANN+HUMMEL in 2011:
 - Lead Product Engineer, Department of Oil Filtration
 - Simulation Engineer, Department of Simulation Filter Elements

We separate the **useful** from the **harmful**

T

Ī

The company in figures Over 80 years of innovation, expansion, and growth

1941	
Founding Year	

30+

Countries

23,000

Employees

80+

Locations

5

4.2

Billion Euros of Sales Revenue

2,500

Patents and Applications

26

Filters per Second

June 24th Smart Filter Element Development Creating ML & optimization based tools provided as webservices

Cleaner Mobility

6

Cleaner Air

Cleaner Water

Smart Filter Element Development Use Cases at MANN+HUMMEL

June 24th
Smart Filter Element Development Creating ML & optimization based tools provided as webservices

Smart Filter Element Development Use Cases at MANN+HUMMEL

June 24th Smart Filter Element Development Creating ML & optimization based tools provided as webservices

Expert Users Element Scale

- Product Optimization
 - Performance
 - Material Costs
 - Pressure drop
 - Locations of Air Cleaners

FEA Example

- Mass / cost reduction targeted while keeping collapse strength
- AMOP used
- ~ 6% mass reduction achieved

Expert Users Filter Media Scale – Virtual Development Process

Analysis

Characterization

Optimization & Manufacturing

Smart Filter Element Development Creating ML & optimization based tools provided as webservices

Expert Users Filter Media Scale - There is no free lunch

- Fiber characteristics
 - Fiber type
 - Fiber diameter d
 - Fiber shape a b⁻¹
 - Fiber orientation
- Fiber structure
 - Number of layers n
 - Fiber mix ϕ
 - Grammage G
 - Thickness t
 - Packing density 1-ε

Number of variations

 $\rightarrow 2$ $\rightarrow 4$

 $\rightarrow 2$

 $\rightarrow 4$

 $\rightarrow 4$

 \rightarrow

 $\rightarrow 4$

Total design concepts:

4096

Computation time for Δp_0 / η_0 : ${\sim}4.0\,$ hours per simulation

≻ ~16 k hours (680 days)

Computation time for dhc: \sim 2.5 weeks / \sim 420 hours per simulation

≻ ~1720 k hours (196 years)

- manageable only by high degree of automation
- reduce effort by using optiSLang

Smart Filter Element Development Use Cases at MANN+HUMMEL

Democratization smartFE Vision

"What is the optimal filter media and the

Democratization Workflow Scheme

Democratization Workflow Scheme

June 24th

15

HUMMEL

Democratization

Example 1: Model generation comparison

Case definition:

- Well defined physical prediction equations available
- Input data: 168 experimental measurements
- Setup: 3 parameters, 3 responses
- Side-by-side comparison of response prediction results from MOP and curve fitting model
- Static DOE full factorial layout with 1058 design points

/\nsys / dynard o			\checkmark
Response	СоР	CoD adj.	CoD adj.
Δр	0.995	0.996	0.985
Efficiency	0.987	0.993	-
Penetration	0.993	0.996	0.958

Democratization Example 1: Model generation comparison – results

between models is low

Non-physical predictions need to be covered via advanced MOP settings, e.g. prediction domain

MANN+

Democratization Example 2: A MOP based workflow

Challenges:

- Constrains for sampling → clustered design space
- Approximation quality \rightarrow reduced model range
- Multiple scenarios

Democratization **Example 3: Customizable visualization capabilities**

For our democratized applications interactive, customizable X-avis' visualizations are an essential asset to

- ... visualize complex, multi-dimensional data,
- ... foster what if scenario evaluations,
- ... enable multi-objective optimizations,
- ... enhance user experience,
- ... take better design decisions.

11

522

Acknowledgements

Florian Keller Julian Ziegler Lukas Krupa Alexander Kilian Preetham Rajashekhar

Rene Kallmeyer Stefan Marth

