

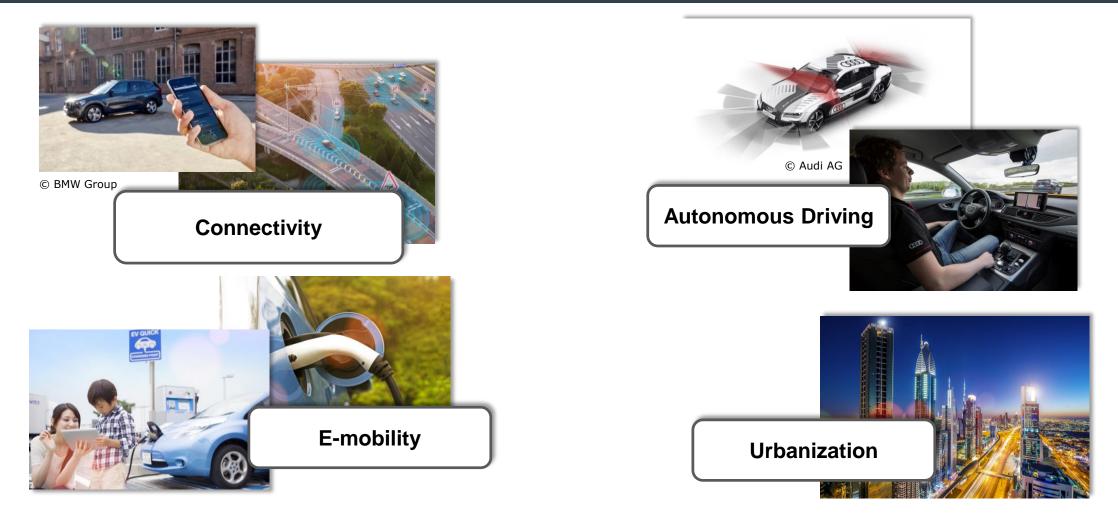
Provision of MOPs via web-apps for the rapid assessment of solder joint reliability

<u>Martin Niessner</u>¹, Maofen Zhang¹ *et al.*¹, Jonas Foerster², Rene Kallmeyer²

¹Infineon Technologies AG, Munich and Regensburg, ²ANSYS Dynardo GmbH, Weimar Main contact: martin.niessner@infineon.com

- Design for Reliability: Challenges and Motivation
- Physics-of-Failure of a non-standard stress test: PCoB
- Provision of MOPs via web-apps
- > Summary

- Design for Reliability: Challenges and Motivation
- Physics-of-Failure of a non-standard stress test: PCoB
- Provision of MOPs via web-apps
- > Summary



Design for Reliability: Challenges and Motivation Trends influencing reliability requirements

iReλ 4.0 Courtesy of U. Abelein intelligent Reliability 4.0

(Infineon Tech. AG)

Source: U. Abelein, "Challenges of Semiconductor Product Qualification for Extended Automotive Requirements", IPC Automotive Electronics Reliability Forum, 2018

Design for Reliability: Challenges and Motivation Contributing factors

Contributing factors:

- Additional operating states beside driving:
 - On-grid parking
 - Vehicle-Preconditioning (battery as well as driver comfort like cabin heating)
 - Charging

Consequences:

Longer operating times

→ Increase in reliability requirements

Source: U. Abelein, "Challenges of Semiconductor Product Qualification for Extended Automotive Requirements", IPC Automotive Electronics Reliability Forum, 2018

Design for Reliability: Challenges and Motivation Extended mission profiles (data from 2018) Courtesy of Ulrich Abelein (Infineon Technologies AG)

Time [h]

400

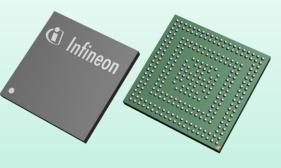
3,200

26.000

8.000

2,400

914


7.312

59.410

18.280

5.484

Example:

Microcontroller for use in a battery charging system

Lifetime (same like vehicle):

- > Op. Ambient Temp. Range:
- Non-operating time:
- > Operating time:

15 years -40 °C to 125 °C 91,400 hours 40,000 hour

How long would be the stress test duration according to AEC for this mission profile?

More details on Automotive Electronics Council (AEC): <u>http://www.aecouncil.com/</u> Example: AEC-Q100 Rev H: <u>http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf</u> Source: U. Abelein, "Challenges of Semiconductor Product Qualification for Extended Automotive Requirements", IPC Automotive Electronics Reliability Forum, 2018

	•		,
		125	
		120	
		76	
		23	
		-40	
	Non C	Operat	ing
\rightarrow		85	
		80	

*) Arbitrary chosen, corresponding to "Automotive Application Questionnaire for Electronic Control Units and Sensors", ZVEI, October 2006

Customer's

Mission Profile*

T_{ambient} [°C]

Operating

60

23

-40

Design for Reliability: Challenges and Motivation Equivalent stress time (data from 2018) (1)

Equivalent HTSL stress test duration

Assumptions:

```
Arrhenius Model with E_a=0.7 \text{ eV}, Self heating: 20 °C
```

Result:

```
T_{stress,eq}@175 °C = 1,521 h (>60 days!)
T_{stress,eq}@150 °C = 4,437 h (>180 days!)
```

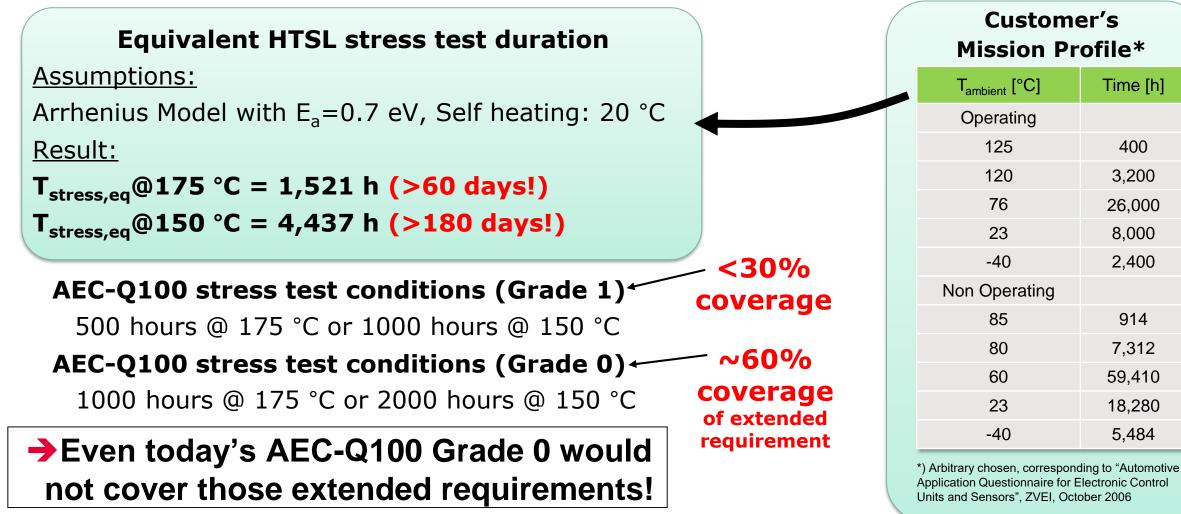
Long stress test durations no longer allow for experimental trial and error → Simulation-based Design for Reliability

More details on Automotive Electronics Council (AEC): <u>http://www.aecouncil.com/</u> Example: AEC-Q100 Rev H: <u>http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf</u>

Source: U. Abelein, "Challenges of Semiconductor Product Qualification for Extended Automotive Requirements", IPC Automotive Electronics Reliability Forum, 2018

iReλ4

Courtesy of U. Abelein intelligent Reliability 4.0


(Infineon Tech. AG)

*) Arbitrary chosen, corresponding to "Automotive Application Questionnaire for Electronic Control Units and Sensors", ZVEI, October 2006

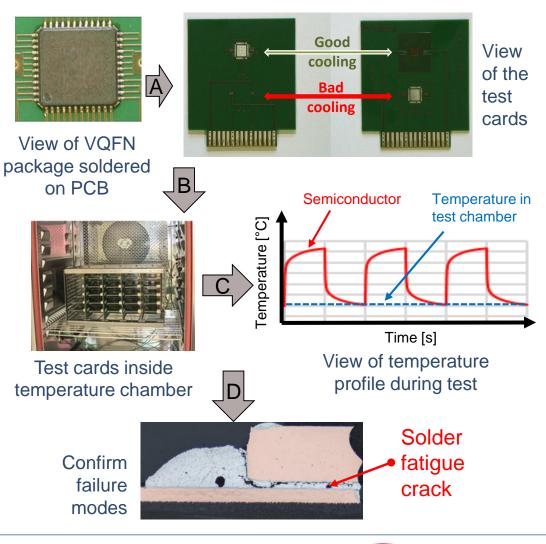
Design for Reliability: Challenges and Motivation Equivalent stress time (data from 2018) (2)

Source: U. Abelein, "Challenges of Semiconductor Product Qualification for Extended Automotive Requirements", IPC Automotive Electronics Reliability Forum, 2018

- Design for Reliability: Challenges and Motivation
- Physics-of-Failure of a non-standard stress test: PCoB
- Provision of MOPs via web-apps
- Summary

PoF of a non-standard stress test: PCoB Exploring beyond standard stress tests

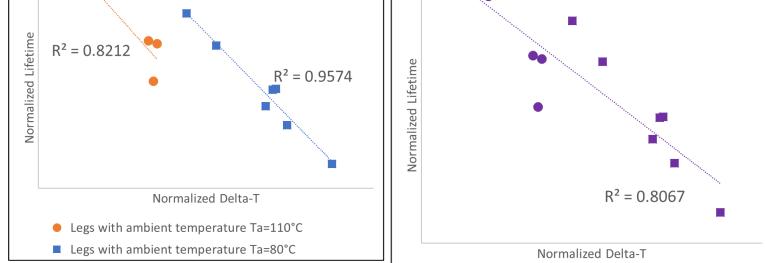
PCoB: Power Cycling on Board


Test	AEC Q100 HTOL	AEC Q100 TC	AEC Q100 PTC	IPC9701 TCoB*	PCoB (this work)
Ambient temperature		$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow \downarrow$	—
Active On/Off	Yes	No	Yes	No	Yes
Standard stress test	Yes	Yes	Yes	Yes	No
Focus	1 st level	1 st level	1 st level	2 nd level	2 nd level

*TCoB: Temperature Cycling on Board

Sources: AEC Q100 Rev H, http://www.aecouncil.com , IPC9701 https://www.ipc.org/TOC/IPC-9701A.pdf , M. Zhang et al., EuroSimE 2022, doi: 10.1109/EuroSimE54907.2022.9758841

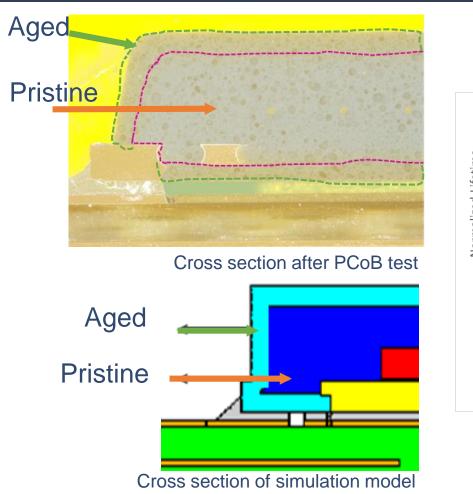
PoF of a non-standard stress test: PCoB Correlation of experiment vs. analytical models

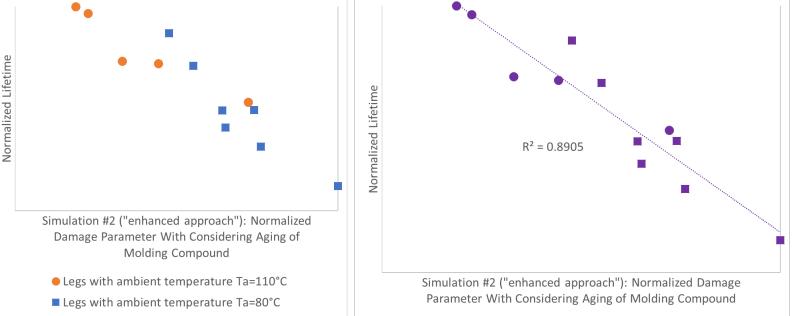

Series of test data was obtained at two ambient temperatures:

Attempts of fitting analytical acceleration models from, e.g. AEC Q100, on log-log-scale:

Name	Ambient temperature [°C]	Cooling of mount point	Heater Power level [norm.]	Delta-T (ΔT) [norm.]	On- /Off- Times [min]	Fatigue life [norm.]
Leg 01		good	140%	108%	5/5	86%
Leg 02		bad	140%	139%	5/5	28%
Leg 03	110	bad	100%	100%	5/5	100%
Leg 04		bad	132%	133%	5/5	29%
Leg 05		bad	139%	136%	15/15	12%
Leg 06		good	315%	246%	5/5	10%
Leg 07		bad	315%	322%	5/5	2%
Leg 08		good	234%	185%	5/5	26%
Leg 09	80	bad	234%	234%	5/5	7%
Leg 10		bad	158%	160%	5/5	60%
Leg 11		good	297%	242%	5/5	10%
Leg 12		good	315%	260%	15/15	4%

Sources: AEC Q100 Rev H, <u>http://www.aecouncil.com</u> M. Zhang et al., EuroSimE 2022, doi: 10.1109/EuroSimE54907.2022.9758841


Analytical acceleration models do not allow for an accurate fit of all test data



PoF of a non-standard stress test: PCoB Correlation of experiment vs. simulation

Fitting of enhanced simulation considering aged layers of molding compound on log-log-scale

Enhanced simulation considering aged layers shows good correlation

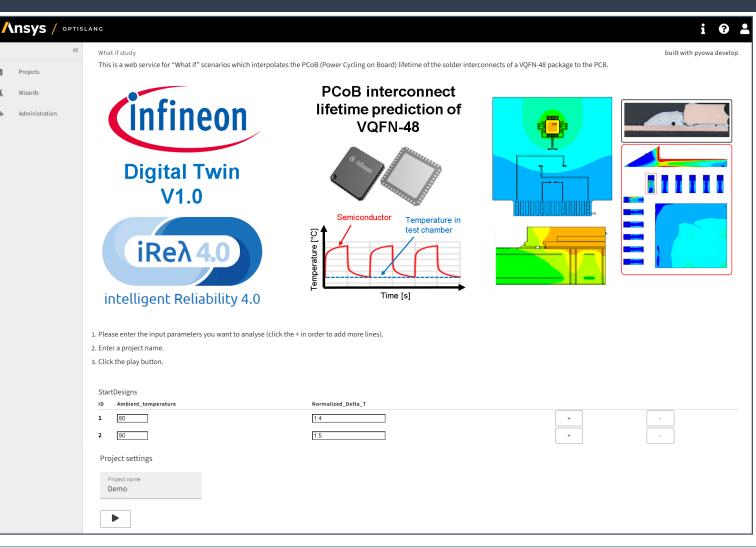
Sources: M. Zhang et al., EuroSimE 2022, doi: 10.1109/EuroSimE54907.2022.9758841

- Design for Reliability: Challenges and Motivation
- Physics-of-Failure of a non-standard stress test: PCoB
- Provision of MOPs via web-apps
- > Summary

Provision of MOPs via web-apps Motivation and interface (1)

Ê

A

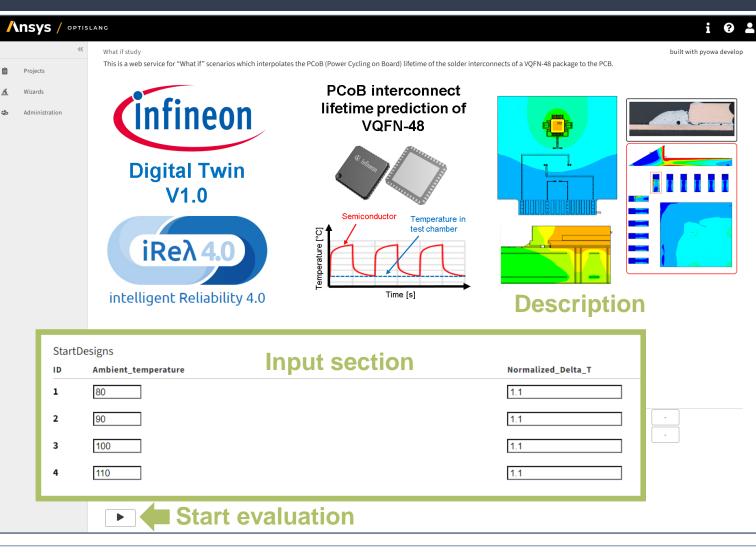

:20

iReλ4 intelligent Reliability 4.0

Sometimes, fast assessment of a component is needed for different ambient temperatures and power levels:

T _{ambient} [°C]	Time [h]
Operating	
110	?
100	?
90	?
	?

- Because computing one FEM simulation might take several hours:
 - → Prepare MOPs and offer them via the optiSLang webservice


Provision of MOPs via web-apps Motivation and interface (2)

iReλ 4.0 intelligent Reliability 4.0

• Sometimes, fast assessment of a component is needed for different ambient temperatures and power levels:

T _{ambient} [°C]	Time [h]
Operating	
110	?
100	?
90	?
	?

- Because computing one FEM simulation might take several hours:
 - Prepare MOPs and offer them via the optiSLang webservice

Provision of MOPs via web-apps Result view with customized monitoring (1)

	Example Custom Monitoring	built with pyowa develo							
	X Axis	Ambient_temperature × •							
	Y Axis	Normalized_Lifetime ×							
	•								
	2								
Lifet	5								
Normalized_Lifetime .t									
Norm	1				•				
	80	85	90	95	100	105	110		
				Ambient_temperature					
		Feasible	Status	Ambient_temperature	Normalize	d_Delta_T	Normalized_Lifetime		
		true	Succeeded	80	1.1		2.1827681402833017		
		true	Succeeded	90	1.1		1.5428477684406203		
		true	Succeeded	100	1.1		1.0426296052734723		
	0.4	true	Succeeded	110	1.1		0.6649092760415045		

- Evaluation of results on MOP takes only a few seconds
- Rapid assessment by reliability engineers who are not simulation experts is enabled

Provision of MOPs via web-apps Result view with customized monitoring (2)

	Example Custom Monitoring X Axis							built with pyowa develop			
			Ambient_temperat	Ambient_temperature				Select X and Y axes			
	Y Axis		Normalized_Lifetin	Normalized_Lifetime				l	× •		
		•									
Normalized_Lifetime	2				Anthill	plot					
ized_L	5			•							
Normal	1						1				
2											
	٤	30	8	5 90)	10	0	105	110		
					Ambient_t	emperature					
	d		Feasible	Statu	IS	Ambient_temperature	Normalized	_Delta_T	Normalized_Lifetime		
			true	Succ	eeded	80	1.1		2.1827681402833017		
			true	Succ	eeded	90	1.1	Results	1.5428477684406203		
			true	Succ	eeded	100	1.1		1.0426296052734723		
).4		true	Succ	ceeded	110	1.1		0.6649092760415045		

- Evaluation of results on MOP takes only a few seconds
- Rapid assessment by reliability engineers who are not simulation experts is enabled

Special thanks to

Jonas Foerster!

17

iReλ4

intelligent Reliability 4.0

- Design for Reliability: Challenges and Motivation
- Physics-of-Failure of a non-standard stress test: PCoB
- Provision of MOPs via web-apps
- Summary

- Trend towards increased reliability requirements is expected
- Physics-of-Failure (PoF) of accelerated stress tests with long duration might not be captured completely with known analytical acceleration models
- More complex FEM simulations might be needed for capturing the full Physics-of-Failure (PoF) of accelerated stress tests with long duration
- MOPs provided via web-apps allow for rapid assessment and might be an alternative to analytical models

ECSEL

loint Undertakin

This work is supported by the ECSEL JU Project iRel40 (www.iRel40.eu)

iRel40 (www.irel40.eu) has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876659. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Germany, Austria, Slovakia, Sweden, Finland, Belgium, Italy, Spain, Netherlands, Slovenia, Greece, France, and Turkey. In addition the consortium receives national funding from Germany, Austria, Slovakia, Sweden, Finland, Belgium, Italy, Spain, Netherlands, France, and Turkey. The German partners are co-funded by the BMBF and the national Governments from Saxony and Thuringia.

GEFÖRDERT VOM Bundesministerium für Bildung

und Forschung

The project is linked to Infineon's IPCEI on Microelectronics (<u>https://www.ipcei-me.eu</u>).

In Germany Infineon received grants from the German Bundesministerium für Wirtschaft und Energie (BMWi, meanwhile BMWK). In Austria this work is funded by the Austrian Federal Ministry of Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and the Austrian Federal Ministry of Digital and Economic Affairs (BMDW), the implementation is done by the austria wirtschaftsservice (aws) and the Austrian Research Promotion Agency (FFG).

