Ansys WORKSHOP 2022

Recent Developments in Metamodeling, Optimization, and Uncertainty Quantification in optiSLang

L. Gräning, T. Most, U. Adam, L. Tomaso, M.B. Salem optiSLang algorithm team

ANSYS, Weimar, Germany

Machine Learning & Al

- Overview & Guideline
- DIM-GP models in scalar MOP
- DIM-GP for signal approximation

Single & Multi-Objective Optimization

- One Click Optimization
- Derivative-based optimizer for HFSS

Robustness & Reliability Analysis

- Discrete distributions
- Reliability Importance Measures

Machine Learning & Al

MOP – Automatized Metamodeling & Machine Learning

- Polynomials
- MLS: Moving Least Squares
- Kriging (Isotropic / Anisotropic)
- GARS: Genetic Aggregation of Response Surface (NEW 2022R1: linux support)
- Support Vector Regression (NEW 2022R1: linux support)
- DFFN: Deep Feed Forward Network (2021R2 - Integral part)
- DIM-GP: Deep Infinite Mixture of Gaussian Process (NEW 2022R1)
- Signal MOP
- DIM-GP signal (Beta) (NEW 2022R2)

🗙 Mo	odels	
~	Polynomials	
	Use	🗹 True
	Order	2
	Coefficient factor	2.00
~	Moving least squares	
	Use	🗹 True
	Order	2
	Coefficient factor	8.00
~	Kriging	
	Use	🗹 True
	Anisotropic	False
	Coefficient factor	8.00
~	Genetic Aggregation Respo	nse Surface
	Use	False
~	Support Vector Regression	
	Use	False
~	Deep Feed Forward Networ	k
	Use	False
~	Deep Infinite Mixture Gauss	ian Process (DIM-GP)
	Use	False
~	Signal MOP	
	Use	🗹 True
~	External	
	ASCMO	False
	DIM-GP Signal (Beta)	🗹 True

Premium

Φ

Enterpris

Deep Infinite Mixture Gaussian Process (DIM-GP)

- Stochos is an external library developed by Probaligence GmbH
- Since 2022 R1 delivered with oSL enterprise
- Stochos offers meta-models for scalar/signal/field inputs and outputs

Recommendation for Scalar Metamodel Usage

Use case	Number of training samples	Polynomial	MLS	lsotropic Kriging	Anisotropic Kriging	SVR	GARS	DFFN	DIM-GP
	N ≤ 200	х	х	х	х	х	х		
Good compromise between training time and model quality	200 < N ≤ 1000	х	х	х		Х		Х	х
	N > 1000	x				х		х	
	N ≤ 500	x	х	x	x				
Best quality model for FMU export/digital twin	500 < N ≤ 2000	x	х	x					
	N > 2000	x							
	≤ 500	х	х	х	х	x	х	х	х
Best quality model	500 < N ≤ 2000	x	x	x		X		x	x
	N > 2000	х				х		Х	

Guideline is introduced in 2022 R2 in documentation and training

Example: Ten Bar Truss – MOP Training Performance

- For MLS, Kriging and GARS, the training time increases significantly with the number of sample
- SVR, and DIM-GP can be applied efficiently up to 2000 samples
- Polynomials and DFFN can be used for even larger data sets

/ DIM-GP for Signal Data Approximation (beta in 2022 R2)

Post-processing:

- Visualization of the F-CoP in % in the Signal Plot
- Limitation: no parameter sensitivities or correlations available yet

Show settings for: Currently	y active plot		\sim
1	Sig	ınal plot	
Signal:		force_disp_DIM-GP Signal	\checkmark
Channel name:		force_disp_DIM-GP Signal_Chan_0	\checkmark
Data name:		F-COP (%)	\checkmark
Number of shown data:		1	
Reference signal:			\checkmark
Adjust resolution:			
Show statistical values:			
Show as contour plot:			
	Set Reference	From Selection	

Example: Wedge Splitting Test – Signal MOP vs. DIM-GP

Customer Example: Signal MOP vs. DIM-GP

Ansys

Customer Example: Signal MOP vs. <u>DIM-GP</u>

- Signal MOP can not distinguish between low and high frequency phenomena
- Main trends in data are represented by DIM-GP
- For low-frequency phenomena the DIM-GP approximation is distorted by artificial noise

Customer Example: DIM-GP & Domain Filtering

©2021 ANSYS, Inc. / Confidential

Customer Example: DIM-GP & Domain Filtering

© 2021 ANSYS, Inc. / Confidential

Insys

New MOP Framework – Scalar MOP in 22 R2 (beta)

- More control of MOP setup in UI
- Improved architecture
- New framework for more metamodels & better performance
- Available
 - MOP Build ("MOP3 node")
 - Polynomial, MLS, Kriging, RBF
 - Postprocessing
 - MOPSolver
- Limitations in 22 R2:
 - No wizard
 - No AI/ML models yet

	Moving Least Squ Polynomial Model Radial Basis Func.
Response surface 3D plot Polynomial Model approximation of sinucos Coefficient of Prognosis = 80 %	inus
	Local CoP 0.98 0.95 0.90 0.85 0.80 0.75 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.36
-1 1.5 1 0.5 0 x_{04} -0.5 -1 -1.5 -0.8 -0.4	0.2 ^{0.4} 0.6 ^{0.8}

Sensit

Absolute p

Paramete

Available r Name Kriging

	MOP* (Beta)		
th *	Sensitivity/Sensitivity.omdb	- Of	10
s Models	Competition Additional		
odels	Models in competition		
	Name		
odel 🔶	Kriging Model 1	×	1
east Squ +	Kriging Model 2	×	٦
sis Func +	Polynomial Model	×	1
tiStar	Model Configuration		
I CoP 0.98 0.95 0.90 0.85	Model Configuration	el Pro	
0.95 0.90 0.85 0.80	Model Configuration	el Pro Auto	
I CoP 0.98 0.95 0.90 0.85 0.80 0.75	Model Configuration	el Pro Auto +	
 I CoP 0.95 0.95 0.90 0.85 0.80 0.75 0.70 0.65 	Model Configuration Model Configuration Polynomial Mode License : Mixed Term Interaction : Max. Order :	el Pro Auto * 2	
0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60	Model Configuration Model Configuration Polynomial Mode License : Mixed Term Interaction : Max. Order : Order :	el Pro Auto * 2 Auto	
 CoP 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 	Model Configuration Model Configuration Polynomial Mode License : Mixed Term Interaction : Max. Order : Order : Value Transformation :	el Pro Auto * 2 Auto Auto *	

/\nsys

WST

WORKSHOP

Single- and Multi-Objective Optimization

One-Click-Optimization (OCO) (Beta)

Objectives:

- "Settingsless" optimization algorithm that could automatically suit any optimization problem.
- The results should be as good as possible: optimal or close to the optimal algorithms.
- Improve our standing with competitors (SHERPA, pilOPT,...).

General philosophy:

- Algorithm competition where some "selected algorithms are running".
- Challenging algorithms are trying to take over the spots of the running algorithms.

One-Click-Optimization (OCO)

- Selects automatically & dynamically the most suitable optimization algorithms
- Runs simultaneously multiple optimization algorithms (global & local search)
- Supports continuous and integer parameters (discrete by value or ordered by index)
- Support of constrained singleobjective optimization applications (New 2022R1)
- Multi-objective optimization support (New 2022R2)

OCO - ASFE (run 9): convergence graph

Validation of Performance

- Library of many single- and multi objective problems
- Very good results with practical examples with e.g. lighthouse customers (confidential data)
- Very good results compared to literature

■ Heeds SHERPA ■ optiSLang OCO

Normalized best solution vs. Number of Evaluations

e.g. SHERPA (Siemens-Heeds) http://www.redcedartech.com/pdfs/SHERPA_Benchmark_0110.pdf

x2

© 2021 ANSYS, Inc. / Confidential

Example: One-Click-Optimization (OCO)

nsys

where:

²/4]

GLAD - Global and Local Approximation of Derivatives

HFSS optimizer finalization 2022 R1

- Introduced at WOST 2021
- Considers the HFSS derivatives of signal responses for more efficient optimization
- Setup of integration is supported by an AEDT wizard
- Delivered as beta feature in 2022 R1

Vorkshop

GLAD - Global and Local Approximation of Derivatives

Define variables for derivative study

tools\act\v221\aedt

V

~

~

~

~

~

~

4

~

~

Ansys

fillet radius

H1

H2

H3

H4

H5

L1 L2

L3

L4

L5

Ycoax

Robustness & Reliability Analysis

©2021 ANSYS, Inc. / Confidential

Poisson Distribution for Stochastic Parameters

- Simulated values can only be natural numbers 0,1,2,3,...
- Only one distribution parameter, which is equivalent to mean and variance
- PDF does not exist, PMF is implemented instead
- CDF and inverse CDF are step-wise, similar as for Bernoulli and Discrete distributions

Distribution parameter

• Expected number of events $\lambda>0$

Mean value & standard deviation

- $\bar{X} = \lambda$
- $\sigma_X = \sqrt{\lambda}$

Probability mass function

•
$$p_X(x) = \begin{cases} \frac{\lambda^x \cdot e^{-\lambda}}{x!} & \text{if } x \in \{0, 1, 2, 3, ...\} \\ 0 & \text{otherwise} \end{cases}$$

Visualization of Discrete Distributions

- Point-wise Probability Mass Function instead of PDF
- Ordinate shows probability values, since no "density" exists
- Implemented for Bernoulli, Discrete and Poisson
- Automatic fit allows fitting of discrete distributions only for discrete data

© 2021 ANSYS, Inc. / Confidential

Reliability Importance Plot

- Contribution of variation of stochastic inputs with respect to failure probability
- Adaptive Sampling in 2021 R1 \checkmark
- **ISPUD** in 2021 R2
- FORM + Monte Carlo in 2022 R1 \checkmark

/\nsys

WOST

WORKSHOP Input parameter importance for Design point 3 Probability of Failure: 0.0011986

Region 1: x1 only

x3 0%

×1 100 %

Questions ?

Machine Learning & AI

- Overview & Guideline
- DIM-GP models in scalar MOP
- DIM-GP for signal approximation

Single & Multi-Objective Optimization

- One Click Optimization
- Derivative-based optimizer for HFSS

Robustness & Reliability Analysis

- Discrete distributions
- Reliability Importance Measures

Ansys WSST

WORKSHOP

