

Layout of a smart actuator for automotive thermal management

Ansys

WST

WORKSHOP

2022

C. Hugel Friday, 24.06.2022

Agenda

- 1. Very short introduction of Hilite
- 2. Introduction to the PMSM
- 3. Sensitivity analysis of the Motor
- 4. Optimization with OptiSLang
- 5. Tolerance based sensitivity analysis
- 6. Conclusion

01 Hilite International

- founded in 1930
- about 1700 employees
- •9 locations on 3 continents
- 550 Mio. € turnover

Engine applications

(+)

Introduction

Task, starting conditions and system setup

02 Introduction to Task

WORKSHOP

- Developments at Hilite Germany include valves for thermal management with specific demands
- Besides piston and transmission, the electric machine is the most important part of the valve
- For well operating valve, the right electric machine has to be chosen
- Hilite is using a PMSM "Permanemt Magnet Synchronous Motor"

03 Starting condition

WORKSHOP

Torque

- Reference design with straight "teeth" for stator outside and inside
- 60°-periodic half model to minimize calculation time
- Quasistatic transient calculation with rotation angle over time
- Different applied electric currents to allow all optimizations
- Variation of the shape of the teeth to positively influence the characteristic curve of the torque (9 parameters)

All rights reserved © Hilite International

04 Computations with OptiSLang

- Computation of torque for Stepper-Motor in ANSYS Maxwell (AEDT)
- Usage of the ANSYS AEDT integration for OptiSLang
- AEDT-OptiSLang setup with separated output for more flexible postprocessing
- Custom simulation solver mode with script to prevent single runs

First sensitivity analysis

Influence on cogging and maximum torque

05 Sensi. tooth – Cogging torque

(2)

5

Zahn Außen Tooth Outside

①__

Coil

			W00	W01	W02	W03	W04	W05	W06	W07	W08	W09	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
1	Spule	nverschiebung-	0.0 %																														2.4 %
2	Zahn_	A_breite_Basis [_]	6.9 %	32.8 %	33.2 %	34.3 %	35.3 %	38.0 %	40.6 %	41.8 %	37.8 %	41.0 %	38.5 %	34.7 %	33.8 %	35.2 %	33.6 %	8.4 %	33.2 %	32.6 %	34.4 %	35.4 %	39.2 %	41.9 %	42.2 %	37.1 %	40.3 %	37.8 %	34.2 %	35.3 %	33.1 %	34.7 %	7.4 %
3	Zahn_A	_breite_Spitze-	4.0 %	15.4 %	15.4 %	15.4 %	16.0 %	17.2 %	17.7 %	16.3 %	16.9 %	16.7 %	15.5 %	15.7 %	16.2 %	15.2 %	15.6 %	1.3 %	15.3 %	15.5 %	15.9 %	16.5 %	17.1 %	16.3 %	17.4 %	16.2 %	16.3 %	15.7 %	15.4 %	15.8 %	14.8 %	14.8 %	
4	Zahn_/	A_hoehe_Basis [_]	5.5 %	4.3 %	5.0 %	4.3 %	4.1 %	4.0 %	4.3 %	4.0 %	3.2 %	3.9 %	3.8 %	4.1 %	3.9 %	4.5 %	5.1 %	4.5 %	3.1 %	4.3 %	3.9 %	3.8 %	3.4 %	4.4 %	3.9 %	2.6 %	4.0 %	4.5 %	3.9 %	4.3 %	4.9 %	5.0 %	5.8 %
5	Zahn_A_	hoehe_gesamt-	2.6 %	0.2 %	1.2 %	1.2 %	1.4 %	1.6 %	1.4 %	1.2 %	1.2 %	1.3 %	1.4 %	1.3 %	1.4 %	1.2 %	1.3 %	8.8 %	0.3 %	1.4 %	1.3 %	1.3 %	1.4 %	1.5 %	0.9 %	1.2 %	1.4 %	1.2 %	1.2 %	1.1 %	1.1 %	1.2 %	1.0 %
6	Zahn_	I_breite_Basis [_]	0.0 %	50.8 %	53.4 %	53.5 %	53.6 %	50.2 %	46.4 %	43.2 %	45.1 %	47.2 %	50.4 %	53.3 %	53.5 %	52.3 %	48.3 %	0.5 %	50.6 %	51.5 %	53.4 %	53.9 %	50.6 %	46.8 %	43.6 %	45.7 %	48.3 %	50.3 %	51.8 %	53.7 %	51.3 %	50.0 %	
\bigcirc	Zahn_1	_breite_Spitze-	1.8 %	9.3 %	9.0 %	7.5 %	6.3 %	5.7 %	4.5 %	4.8 %	4.9 %	5.1 %	5.5 %	6.9 %	7.1 %	7.9 %	7.8 %	0.0 %	9.5 %	9.3 %	7.6 %	6.3 %	5.0 %	4.7 %	5.5 %	5.4 %	4.6 %	5.4 %	6.7 %	7.2 %	7.9 %	8.8 %	3.7 %
8	Zahn_	I_hoehe_Basis [_]	4.9 %	1.5 %	1.4 %	1.9 %	2.0 %	1.5 %	1.0 %		1.0 %	1.0 %	1.6 %	1.8 %	2.2 %	1.6 %	1.5 %	7.4 %	1.6 %	1.8 %	1.9 %	1.7 %	1.6 %	1.3 %		0.8 %	1.2 %	1.5 %	1.9 %	2.0 %	1.9 %	1.4 %	7.1 %
9	Zahn_I_	hoehe_gesamt	0.0 %				0.3 %						0.1 %									0.3 %						0.0 %					
		Total	7.8 %	90.9 %	95.1 %	96.4 %	96.8 %	95.4 %	93.7 %	89.6 %	87.1 %	92.8 %	95.3 %	96.7 %	96.3 %	94.7 %	90.8 %	10.6 %	90.8 %	95.1 %	96.4 %	96.8 %	95.4 %	93.6 %	89.4 %	87.2 %	92.8 %	95.4 %	96.7 %	96.3 %	94.7 %	90.8 %	8.5 %
		ng opi	Ar	ea	of	e	xtr	em	ne	va	lue	es		opl	15L	ang		opi	is.	ang		op	151	ang		op	tist	ang		op	tist	ang	
9	1																																

All rights reserved © Hilite International

Tooth Inside

6

Zahn Innen

(4)

8

05 Sensi. tooth – Torque maximum Workshop

 \bigcirc

(5)

Zahn Außen Tooth Outside

3

(1)

Coil

		Г	W0	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23	W24	W25	W26	W27	W28	W29	W30
	1	Spulenverschiebung-																															1.8 %
50 60	2	Zahn_A_breite_Basis [_]	5.2 %	40.4 %	43.2 %	44.6 %	48.8 %	53.6 %	59.0 %	55.2 %	42.3 %	31.2 %	29.2 %	27.7 %	28.2 %	29.5 %	30.7 %	33.0 %	39.0 %	40.6 %	43.8 %	43.0 %	49.1 %	53.7 %	57.8 %	61.6 %	59.9 %	55.1 %	51.7 %	47.6 %	45.8 %	43.8 %	7.1 %
	3	Zahn_A_breite_Spitze-		13.3 %	13.8 %	15.1 %	15.9 %	16.6 %	16.5 %	19.0 %	22.6 %	19.9 %	16.1 %	15.5 %	15.3 %	14.1 %	13.1 %	11.1 %	7.9 %	6.0 %	4.1 %	3.7 %	2.3 %	1.5 %	1.8 %	6.9 %	13.8 %	18.6 %	17.9 %	16.9 %	16.9 %	17.1 %	4.7 %
	4	Zahn_A_hoehe_Basis [_]		3.2 %	3.9 %	3.0 %	3.0 %	3.2 %	2.7 %	2.4 %	3.3 %	3.4 %	2.9 %	2.5 %	2.6 %	2.6 %	1.8 %	0.4 %	0.0 %	0.5 %	0.9 %	0.9 %	0.3 %	0.0 %		1.1 %	2.7 %	3.2 %	3.5 %	3.8 %	3.6 %	3.6 %	1.5 %
	5	Zahn_A_hoehe_gesamt [_]		0.0 %	0.0 %	0.0 %	0.0 %	0.0 %	0.3 %	2.1 %	4.4 %	3.3 %	2.8 %	2.2 %	2.4 %	2.6 %	2.2 %	3.0 %	2.6 %	2.8 %	1.8 %	1.4 %	0.8 %	0.8 %	0.6 %	1.4 %	2.3 %	2.9 %	2.3 %	1.9 %	1.6 %	1.7 %	3.9 %
	6	Zahn_I_breite_Basis [_]		39.8 %	40.6 %	38.2 %	36.7 %	32.4 %	26.1 %	21.1 %	28.7 %	39.6 %	43.6 %	45.2 %	42.5 %	37.0 %	27.4 %	19.2 %	23.8 %	38.1 %	44.4 %	49.1 %	48.0 %	44.4 %	38.7 %	29.4 %	23.7 %	25.2 %	30.9 %	35.5 %	38.9 %	40.8 %	
	7	Zahn_I_breite_Spitze [_]	0.3 %	7.3 %	7.3 %	6.8 %	6.1 %	5.7 %	6.2 %	8.0 %	12.5 %	13.7 %	14.5 %	15.6 %	17.9 %	19.3 %	22.1 %	20.7 %	15.1 %	7.9 %	4.3 %	0.9 %	0.0 %	0.6 %	1.3 %	4.3 %	8.7 %	10.9 %	11.5 %	11.1 %	10.0 %	10.2 %	6.2 %
	8	Zahn_I_hoehe_Basis [_]		1.3 %	1.4 %	1.4 %	1.4 %	0.5 %	0.1 %	0.0 %	0.6 %	1.7 %	1.9 %	2.3 %	2.1 %	2.1 %	1.7 %	1.2 %	0.3 %		0.0 %				0.0 %	0.4 %	0.6 %	1.0 %	1.3 %	1.1 %	1.1 %		
	9	Zahn_I_hoehe_gesamt [_]		0.0 %	0.3 %	0.3 %	0.7 %	1.0 %	1.7 %	4.6 %	7.7 %	7.6 %	7.3 %	7.3 %	8.8 %	10.6 %	15.7 %	21.4 %	19.9 %	13.7 %	10.1 %	7.1 %	6.3 %	5.6 %	6.6 %	7.7 %	7.3 %	6.2 %	4.1 %	3.7 %	2.8 %	1.7 %	
_		Total [_]	5.6 %	94.6 %	96.8 %	97.4 %	97.9 %	97.8 %	97.4 %	97.3 %	94.9 %	93.1 %	94.7 %	96.5 %	96.9 %	96.8 %	97 %	98.2 %	97.4 %	97.5 %	% 86	98.5 %	98.7 %	98.9 %	99.1 %	98.2 %	96.3 %	96.1 %	96.7 %	96 %	94.6 %	90.8 %	8.2 %
4	Tooth Inside	tiSLang opt	Ar	ea	of	e	xtr	en	ne	va	lu	es		op	tiSL	ang		opi	tiSL	ang		opi	tiSL	ang		op	tiSL	ang		op	tiSL	ang	

All rights reserved © Hilite International

6

Optimizations

Changing shape and extrema of the torque

06 Computations with OptiSLang

- Variables in Data Mining
 - Creation of full model torque curves
 - Optimization objectives
- Optimization of the maximum torque curve
- Different Optimization runs with "ARSM" and "EA"
 - Minimization of cogging torque
 - Maximization of max. torque
 - Maximization of torque combination minimum
 - Change of maximum position (EA)

or Result of optimizations

- ARSM1
 ARSM2
 ARSM3
 EA1

 Image: ARSM1
 Image: ARSM2
 Image: ARSM3
 Image: ARS
- Recalculated results of MOP with Maxwell
 - ARSM1 worse than reference (MOP difference)
 - ARSM2 with largest minimal torque
 - ARSM3 with largest maximal torque (peak)
 - EA1 with maximum torque in central position
 - Cogging torque as a constraint
 - Major changes in value and orientation of cogging torque

All rights reserved © Hilite International

C. Hugel - Hilite Germany

Second sensitivity analysis

Influence of tolerances on cogging and maximum torque

08 Sensitivity with tolerances

 21 variable parameters Limits of variation due to drawing tolerances

26*: Stator außen Durchmesser Scheibe (Nicht abgebildet)

OB Sensi. tol. – Cogging torque

- Influence of tolerances on extreme values can be reduced to 1 major and 4 minor parameters
- CoP with 59% maximum on largest cogging torque

09 Sensi. tol. – Torque Maximum

- Influence of tolerances on maximum torque can be reduced to 4 important parameters
- CoP values vary between 14% and 33%

10 Conclusion

- The sensitivity analysis made it possible to identify the valid parameters for the requested torque curves
- With the MOP and its possibility as a solver, it was possible to successfully do different optimizations
- A model with all important tolerances was able to identify and validate the important parameters and its statistics

 In future analyses, the asymmetric effects on the curves and more complex system simulations are planned

Ansys WSST

WORKSHOP

