Optimization of a boom for a lattice boom crane

Master thesis by Michael Lämmle October 2021 – March 2022

Advisors:

Prof. Dr.-Ing. Thomas Böhlke (KIT)

Dr.-Ing. Florian Eggert (LWE) Steffen Schwertle (LWE)

20th Weimar Optimization and Stochastic Days 2023

Agenda

Introduction

Optimization of a single boom section

Optimization of the boom sequence

- Parameters and Responses
- Process
- Results

Conclusion

Introduction

LIEBHERR

Introduction

Optimization task

Introduction

LR 1600/2 with SL13 boom system

156 m main boom (SL)

- S-sections + Li-sections
- increasing wall thickness $t_1 > t_2 > \cdots > t_6$
- supplementary guying

12 m Fixed jib 36 m Derrick boom

Ballast

- 65 t central ballast
- 190 t superstructure ballast
- 350 t Derrickballast (B2)

Lifting capacity () 20 m: $P_{\rm TL} \approx 71 \, {\rm t}$

Optimization of a single boom section

LIEBHERR

Optimizing a single boom section Parametric System

Parameters

- length, width, height
- diameters
- thicknesses

Responses

- mass
- stiffness
- strength/loadability

(utilization)

Optimizing a single boom section

Optimization for minimum mass

- good-natured behavior → high CoP, MOP-based optimization
- short computing time ightarrow direct optimization
- algorithms: NLPQL and ARSM
- considerable improvement depending on parameter limits of outer dimensions

Optimization of the boom sequence

Parameterizing the main boom sequence

- division into group encoded by index of last intercept: $c_{S1}, c_{S2}, \dots, c_{Li1}, \dots$
- corresponding wall thicknesses: $t_{S1}, t_{S2}, \dots, t_{Li1}, \dots$ (descending order)
- supplementary guying: l_{ASZ} , x_{ASZ}

calculation process

Pareto optimization

ĝ

lifting capacity P_{TL} **†**

mass $m \downarrow$

erection capacity $P_{
m TLA} \ge 1.5 ~
m t$

Evolutionary Algorithm (direct)

ERHERR

lifting capacity P_{TL} **†**

Single objective optimization

Raising capacity $P_{
m TLA} \ge 1.5 \
m t$

Evolutionary Algorithm (direct)

No.	main boom sequence	$m ext{ in t}$	P_{TL} in t	P_{TLA} in t
Ref.		106.60	70.68	3.67
2a		112.94	78.47	1.74
2b		112.58	79.79	1.65
range of wall thicknesses in mm for the LR 1600/2				
3a		112.85	80.31	1.78
3b		113.29	81.13	1.79
range of wall thicknesses in mm according to Liebherr standard				
4a		114.83	82.06	1.67
4b		115.89	82.59	1.63
range of wall thicknesses in mm according to EN 10220				
thick \blacktriangleleft thin				

LIEBHERR

Conclusion

Conclusion

- Optimization of single boom sections is not sufficient for the given optimization problem.
- Optimization of the boom sequence focuses on the most important parameters while retaining the general design of the boom system
- The concept for a sorted parametrization of the boom sequence is effective.
- Considerable improvements in strength and weight can be made by applying optiSLang
- Direct Optimization with evolutionary algorithms is most successfull.
- The problem is not suited for the MOP.