K

Examples of AI for Simulation and Experimental Data

Authors: Dr. Kevin Cremanns*

*Co-founder & responsible for research PI Probaligence GmbH

CADFEM GROUP

About PI Probaligence

PI offers:

- Unique self-developed ML algorithms
- (Customized) software products
- Consulting
- Methods development
- Research partnerships
- Training courses for professionals

Our software Stochos

in the fields of design of experiment, probabilistic machine learning, stochastic analysis and optimization.

24.10.2024

Part of Ansys OptiSLang (2022)

 Since 2022 parts of STOCHOS are integrated in the Ansys OptiSLang (AI+ license required)

Probabilistic Machine Learning - Gaussian Process

Neural networks pros & cons

Advantages:

- Fast training and infinite scalability (big data)
- Generalising regression and classification model
- State of the art for speech, image and video recognition

Disadvantages:

- Requires typically many data points for a good prognosis quality → higher hardware requirements
- Prone to overfitting because of many trainable parameters
- Not a probabilistic model (except Bayesian NN) most practical implementations like Drop-NN or Ensembles are not truly Bayesian
- Many hyperparameters (network topology, number of neurons and layers, type of activation function types, optimizer, ...) which have an impact on the model learning

Hyperparameter tuning:

- ML experts (typically too complex for domain experts)
- Expensive trial & error on an HPC
- Cloud Auto-ML

Hyperparameter	Approximate sensitivity
Learning rate	High
Optimizer choice	Low
Other optimizer params (e.g., Adam beta1)	Low
Batch size	Low
Weight initialization	Medium
Loss function	High
Model depth	Medium
Layer size	High
Layer params (e.g., kernel size)	Medium
Weight of regularization	Medium
Nonlinearity	Low

Why not making a distribution over functions and choose the most likely one to describe our data?

© PI Probaligence GmbH

© PI Probaligence GmbH

© PI Probaligence GmbH

Deep infinite mixture of Gaussian Processes (DIM-GP)

Unique combination of neural networks + Gaussian process

- Non-stationary probabilistic model
- No settings (no expert knowledge)
- Can be used for various forms of data
- Requires little data for good results
- Automatic noise handling
- Low hardware requirements (no cloud, data remains with the customer)

Usable data with DIM-GP

Scalars, signals, fields, tensors, images, meshes can be used as input / partially as output:

x1		x2		x3		x4	х	5	x6		x7		y1	y2	у3
	27		90		0.5	13	.5	51		2		3.5	21.3277356	20759.878	29198.3713
	27.6775		123.975		0.895	13.3	17	49.52		1.855		3.143	23.671277	26584.1086	44739.0519
	31.7725		121.275		0.865	12.2	27	49.76		1.645		3.675	23.9304892	27406.0836	29920.9292
	28.0025		115.425		0.255	12.9	3	48.32		1.505		4.095	27.7219304	21129.948	28484.1233
	28.8475		125.775		0.735	12.3	9	48.16		1.635		4.151	24.0487891	23760.1779	26910.5454
	31.9675		113.175		0.995	12.0)3	45.68		2.275		3.899	25.4821736	26816.4716	28359.8146
	29.0425		129.825		0.625	12.0)5	50.56		1.665		3.913	23.1483514	25908.9534	29674.944
	28.5875		110.925		0.585	13.4	9	49.04		2.305		3.717	26.3814237	20551.2131	40532.4755
	29.3675		128.025		0.135	12.9	9	51.52		2.145		3.535	22.7670509	23111.2386	39604.8048
	27.0275		97.425		0.935	13.1	7	50.48		1.525		3.073	22.9899555	26302.2032	30536.5236
	26.2475		92.475		0.915	13.5	7	48.96		1.875		3.605	24.1296008	19847.4432	27214.5355
	31.6425		120.375		0.375	13.4	15	46.96		1.605		3.227	24.2098935	25843.3629	46968.0151
	29.1725		132.075		0.115	12.1	.7	47.44		1.905		2.835	23.2732693	36018.1975	40974.4874

Live FEM & CFD

DIM-GP should learn the grain distribution in 3D of a material based on a 2D cut

© PI Probaligence GmbH

Geometric Deep Infinite Mixture of Gaussian Processes

Input

Geometric DIM-GP

ML-based predictions of (transient) FEM / CFD results

Mesh node positions + initial node features / boundary conditions (e.g. stress, velocity, ...) + optional global features

2D/3D transient FEM/CFD

- 1 NVIDIA 4090 GPU training time 5 minutes
- 1 CPU (8 cores) training time 12 minutes
- RMSE 1-step prediction: 1.54 x 10e-3

24.10.2024

- 1 NVIDIA 4090 GPU training time 14 minutes
- 1 CPU (8 cores) training time 32 minutes
- RMSE 1-step prediction: 0.05

© PI Probaligence GmbH

- 1 NVIDIA 4090 GPU training time 2 minutes
- 1 CPU (8 cores) training time 7 minutes
- RMSE 1-step prediction: 0.55 x 10e-4

Adaptive optimization & DoE

Efficient adaptive optimization / design of experiment

Single objective: search maximum of y

Total 5 adaptation with 3 formulations = 15 formulations

Ref	1	2	3	Ref	7	8	9
	E.	E	2	p	10	0	0
Ref		5	6	Ref	10	11	12

Final adaptation

Multi-fidelity modeling & optimization

What is multi-fidelity data?

- Fast runtime •
- Low cost ٠

•

- Slow runtime
- High cost

Image source: Aydin, Roland Can, Fabian Albert Braeu, and Christian Johannes Cyron. "General multi-fidelity framework for training artificial neural networks with computational models." Frontiers in Materials 6 (2019): 61.

© PI Probaligence GmbH

What is multi-fidelity modeling?

Model utilizes information from all fidelity sources and predicts in the highest fidelity quality

Advantages:

- Less expensive data points required
- Calibration between simulation and real experiment

What is multi-fidelity modeling?

Real experimental data

© Fraunhofer ILT

Simulation data

© Fraunhofer IWM

Model utilizes information from all fidelity sources and predicts in the highest fidelity quality

Prediction in quality of real experiment

© Fraunhofer ILT

Advantages:

- Less expensive data points required
- Calibration between simulation and real experiment

© PI Probaligence GmbH

Multi-fidelity optimization

Applications

E-Motor Cooling

- Temperature prediction for a E-Motor based on different cooling channel geometries
- 5,366,013 nodes / 2,817,502 elements
- 34 training samples / 4 test samples
- Field input parameters:
 - Node positions (only the non-parameterized geometry)
- Field output parameters:
 - Temperature
- Training time approx. 5-6 h on a single (cheap) GPU

E-Motor Cooling

24.10.2024

© PI Probaligence GmbH

Crash-test

- 1 simulation consists of 50 time steps, 283,791 nodes per time step → 14,189,550 nodes per simulation
- Training data: 32 simulation / Test data: 5 simulation
- Training time of DIM-GP: 21 seconds
- Changing input: thickness of the shells

DIM-GP Prediction

Crash simulation

17.5 s (rolling prediction) or < 1 s if training done with time step as input

0.5 h (20 cores CPU)

Mean absolute percentage error over all 5 test designs over all 50 time steps over all nodes: 5,73%

Drone Antenna

- 45 design variants
 - 37 for training / 4 for test / 4 validation (not used by DIM-GP)
 - 65,808 nodes / 66,464 elements
- Field input parameters:
 - Node positions, normals
- Field output parameters:
 - Radiation pattern (rEtotal)
 - Realized gain

Drone Antenna

Multiscale simulation (ongoing research project with DLR & SGL Carbon)

• Macro scale FEM:

- Deformation
- Temperature
- Micro scale FEM:
 - Material tensor
- Model learns to predict the material tensor based on temperature from macro scale
- Macro and micro scale should be replaced by ML model to speed up calculations
- Trained model on cube

AP2.1 Parametrische FE-Modelle auf allen Ebenen Beispielsimulation Input KI-Modell

Materialtensor

 Als Datenbasis wird der Materialtensor (Output) gewählt, welche von der Temperatur (Input) abhängig ist.

	169524	76592.4	77392.1	-20.0479	-6.02169	-1.5958
	76592.4	169510	77411.8	-12.471	5.51499	8.43605
C ²³⁸	77392.1	77411.8	165837	15.0372	26.7541	-1.16823
\mathbb{C}_2 –	-20.0479	-12.471	15.0372	46464.4	13.7983	15.4344
	-6.02169	5.51499	26.7541	13.7983	44726.2	-1.45661
	-1.5958	8.43605	-1.16823	15.4344	-1.45661	44701.2

Simulationsergebnis Multiskalensimulation [DLR-SG]

Kopplung b2000++pro - STOCHOS, DLR-SG, 29.04.2024

Multiscale simulation (ongoing research project with DLR & SGL Carbon)

• Trained model on cube has been used on a c-beam geometry

Gasket compression

B1_D15 ShaftLength (fixed) initial_interference 0.1mm

Parameters:

- P14 / B1_D18 GasketRadius "R" (fixed?) Ρ
- P2 / B1_D14 GrooveAngel: +/-20° Ρ
- P17 / B1_D12 GrooveWidthScale: >1.2..2.0 Ρ
- P7 / B2_D3 GasketInnerdiameter >10*R?
- P22 / Shaft2WallClearance (fix?) P
- P18 / GasketSlenderness (=2*R/GasketHeight0) : 0.33 .. 1.0[slender..round Ρ
- P19 / deformation_ratio (=GasketHeightAssembly/GasketHeight0) 0.6..0.9 -> high..low Ρ deformation
- P23 / GasketInterference (diametral) Durchdringung beim Einlegen Ρ
- P20 / GrooveRadiusRatio 0.1..1.0[Ρ

Dependent parameters P6/B1_D12 GrooveWidth= GrooveWidthScale*2*R
P15 / B2_D1 GasketHeight0 = 2*R/GasketSlenderness = 2*P14/P18 GasketHeightAssemblv=GasketHeight0*deformation_ratio
P3 / B1_D17 GrooveDepth=GasketHeightAssembly-Shaft2WallClearance =GasketHeight0*deformation_ratio
= P15^P19
P1 / B1_D18 GrooveRadius=GrooveDepth/(2-2*sin(GrooveAngel[GRAD]))*GrooveRadiusRatio =P3/(2-2*sin(P2))*P20
P5 / B1_D15 ShaftDiameter=GasketInnerdiameter+2*GrooveDepth+2*GasketInterference =P7+2*P3+2*P23
P11 / B3_D1 WallInnerDiameter=ShaftDiameter+2*Shaft2WallClearance =P5+2*P22
P12 / B8_P1 t0OffsetGroove_x+ =GasketInterference+initial_interference =-2*P23+0.1 [mm]
P13 / B9_P1 t0OffsetWall_x- =-2*GasketRadius = -2*P14
check GasketHeightAssembly>GrooveHeight?

🗉 🚾 Transient Structural (A1)			
🗘 P1	(B1_D18) GrooveRadius	0.350553	mm
ι <mark>ρ</mark> Ρ2	(B1_D14) GrooveAngle	5	degree
🗘 РЗ	(B1_D17) GrooveDepth	3.2	mm
ф Р4	(B1_D16) Shaftlength	7	mm
🗘 P5	(B1_D15) ShaftDiameter	70.4	mm
ф Рб	(B1_D12) GrooveWidth	2.2	mm
🗘 Р7	(B2_D3) GasketInnerDiameter	60	mm
ф Р8	Material Constant C10	1.25	MPa
ф Р9	Incompressibility Parameter D1	0.016	MPa^-1
🗘 P11	(B3_D1) WallInnerDiameter	71.4	mm
🗘 P12	(B8_P1) t0OffsetGroove_x+	-1.9	mm
🗘 P13	(B9_P1) t0OffsetWall_x-	-2	mm
🗘 P14	(B2_D2) GasketRadius	1	mm
🗘 P15	(B2_D1) GasketHeight	4	mm
ф Р10	PoissonsRatio	0.49	
ф Р17	GrooveWidthScale	1.1	
🛱 P18	GasketSlenderness	0.5	
🛱 P19	deformation_ratio	0.8	
🛱 Р2О	GrooveRadiusRatio	0.2	
ф Р22	Shaft2WallClearance	0.5	mm
🛱 Р23	GasketInterference	2	mm

Parameters									
B1_D18	Groove Radius		2mm						
B1_D14	GrooveAngle	5.0000000	0000003°						
B1_D17	GrooveDepth		14mm						
B1_D16	Shaftlength		7mm						
B1_D15	ShaftDiameter		50mm						
B1_D12	GrooveWidth		30mm						
B2_D3	GasketDiameter		60mm						
B3_D1	WallInnerDiameter		140mm						
B8_P1	t0OffsetGroove_x+		-1mm						
B9_P1	t0OffsetWall_x-		-2mm						
B2_D2	GasketRadius		10mm						
B2_D1	GasketHeight		31mm						

© PI Probaligence GmbH

Gasket compression

Data overview

- 51 design variants
 - 45 for training / 6 for test
 - 1,542,308 nodes
- Input parameters:
 - x,y,z-coordinates of nodes,
 - global geometric parameters: back light angle and boat tail angle (see next slide)
- Output parameters:
 - pressure

Visualization of the geometric changes

Variation of back light angle and boat tail angle

Overview prediction vs. true for a test design

• Training time: 10 seconds (advantage of constant mesh via mesh-morphing)

Overview prediction vs. true for a test design

Mean absolute error over all nodes: 1.07

24.10.2024

Mean relative error over all nodes: 1.29%

© PI Probaligence GmbH

Overview prediction vs. true for 6 test designs

- Mean absolute error: 1.75
- Mean relative error: 3.1 %
- Error estimated over all 6 test designs over all nodes

Al-based warpage optimization of plastic components

Automotive Front Bumper

 overall warpage reduced from 8.0 mm to 4.4 mm (45% improvement)

High Precision Connector

 overall warpage reduced from 0.46 mm to 0.29 mm (36% improvement)

"For over 30 years, our customers have been asking for the perfect parameter set for their plastic component. Thanks to new mathematical methods, we have now created a development tool that calculates this parameter set."

Stefan Vogler Team Manager Simulation & Calculation, M.TEC ENGINEERING GmbH

Al-based warpage & process optimization

Support structure of the vehicle interior

- sample time 80% shorter
- greatly reduced material and energy consumption
- elimination of tool changes

24.10.2024

Solar panel force prediction

- 1 design with 2000 time steps
- 4 different flow angles 0°, 30°, 60°, 90°
- Total 6000 time steps (samples)
- Input parameters:
 - Inlet velocities u, v, w
- Output parameters:
 - 9 x 3 forces x, y, z
- Output is averaged over 100 time steps and mean / std should be predicted

Ansys

Solar panel force prediction

Force	Mean R ²	Std R ²	Force	Mean R ²	Std R ²	Force	Mean R ²	Std R ²
x_panel_00	0.97	0.97	y_panel_00	0.98	0.97	z_panel_00	0.98	0.98
x_panel_01	0.98	0.98	y_panel_01	0.98	0.97	z_panel_01	0.99	0.96
x_panel_02	0.99	0.97	y_panel_02	0.98	0.98	z_panel_02	0.99	0.94
x_panel_10	0.98	0.98	y_panel_10	0.98	0.97	z_panel_10	0.98	0.98
x_panel_11	0.98	0.97	y_panel_11	0.98	0.98	z_panel_11	0.98	0.98
x_panel_12	0.99	0.96	y_panel_12	0.97	0.97	z_panel_12	0.98	0.95
x_panel_20	0.98	0.98	y_panel_20	0.97	0.98	z_panel_20	0.98	0.97
x_panel_21	0.98	0.98	y_panel_21	0.98	0.95	z_panel_21	0.98	0.97
x_panel_22	0.98	0.96	y_panel_22	0.98	0.96	z_panel_22	0.97	0.97

24.10.2024

Solar panel force prediction

Prediction Simulation 01 02 х -00 02 х-11 10 12 11 12 хx -20 21 22 20 21 22 х x 00 01 у· у-11 12 12 11 У у -21 22 20 22 20 21 v у z z٠ 10 11 12 11 12 10 z z٠ 21 20 22 20 21 22 z z х ٧ z х У z

Time step 1

➢ Process integration → Interface between software
➢ Process automation → Full-scale data utilization

The images were provided by courtesy of GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG

CADFEM®

\succ Process automation \rightarrow Full-scale data utilization \rightarrow Geometry recognition

Gemü

Challenges Solution former valve parts

From Classic up provide tok Ainsapproachde faces

> How to detect and select the proper faces correctly in an automatic way?

The images were provided by courtesy of GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG

The images were provided by courtesy of GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG

Contact

Dr.-Ing. Kevin Cremanns <u>kevin.cremanns@probaligence.de</u> www.probaligence.de

CADFEMGROUP