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Abstract

The properties of a structural member are in general not static but stochastic
parameters due to e.g. irregularities within the production process or the materi-
al itself. Furthermore the loads under real conditions are stochastic variables,e.g
wind or the load due to people crossing a bridge. In order to evaluate the failure
probability of a structure, the stochastic character of the problem has to be taken
into account. Different methods exist, but they all have a limited area of applica-
tion. The aim of this paper is to investigate the applicability of certain methods for
specific problems and to give a general indication, which method is appropriate for
certain problem classes.
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1 APPLIED METHODS

1 Applied methods

1.1 General remarks

Given a vector X of n random variables and a limit state function g(x), which divides the
total domain Ω into the failure domain (g(x) ≤ 0) and the safe domain (g(x) > 0), the
failure probability pf is defined as

pf =

∫
g(x)≤0

f(x) dx, (1)

where f(x) is the joined probability density function of the random variables X. By
introducing an indicator function I(x) with

I(x) =

{
1 if g(x) ≤ 0
0 else

(2)

eq.(1) can be reformulated as

pf =

∫
Ω

I(x)f(x) dx, (3)

The analytical evaluation of this integral is in most pratical problems impossible. This
is due to the fact, that an exact determination of the primitive for many functions I(x)f(x)
is not possible, or that no analytical expression for the limit state function g(x) can be
derived, e.g. if g(x) is approximated by a limited number of complex FE-solutions.

1.2 Monte Carlo simulation

The Monte Carlo simulation Rubinstein (1981) is the most robust of all the presented
methods. Samples are generated with respect to the probability density function of each
variable and for each sample the response of the structure is determined. An unbiased
estimator p̃f of the failure probability is given by

p̃f =
1

N

N∑
i=1

I(y), (4)

where N is the number of samples. The expected value and the variance of the estimator
are given by

E [p̃f ] = pf (5)

V ar [p̃f ] =
1

N
V ar [I(x)] (6)

V ar [I(x)] = E
[
(I(x))2

]
− (E [I(x)]2). (7)

The variance V ar [p̃f ] and the statistical error e

e =
V ar [p̃f ]

E [p̃f ]
=

1√
N

√
V ar [I(x)]

pf

(8)

are an indicator for the quality of the estimator p̃f . Especially for small failure probabilities
pf a large number of samples is necessary in order to obtain a good estimator. Assuming
that e.g. V ar [I(x)] = pf = 10−4 a total number of N = 4 · 104 samples is required to
obtain a statistical error e = 0.5 and N = 1 · 106 samples for a statistical error e = 0.1.
For complex problems with a computional expensive algorithm for the calculation of a
single sample the evaluation of such a large number of samples is not acceptable.
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Figure 1: Latin hypercube

1.3 Latin Hypercube Sampling

Latin Hypercube sampling was introduced by McKay u. a. (1979). The domain of each
random variable is decomposed into intervalls with equal probability. The number of
intervalls corresponds to the number of samples. One value from each interval is selected
at random with respect to the probability density in the interval. Combining the intervalls
of a random variables, the so called hypercubes are formed. This is illustrated in fig.1 and
in a similar way the representative point within one hypercube. The n represantative
values obtained for X1 are paired in a random manner (equally likely combinations) with
the n values of X2 and so on until Xn. These n random combinations are called the
Latin Hypercube Samples. If the samples are combined in a random manner, artifical
correlations are introduced, which can be avoid by regrouping the samples Iman und
Conover (1982); Stein (1987). An estimate of the failure probability can be calculated
(analoge to plain Monte Carlo) by

p̃f =
1

N

N∑
i=1

I(y), (9)

1.4 Adaptive Sampling

This procedure Bucher (1988) is based on the Importance sampling technique, which
concentrates the samples within the regions close to the failure domain. The integral in
eq.(3) is written as

pf =

∫
Ω

I(x)f(x) dx (10)

=

∫
Ω

[
I(y)

f(x)

h(x)

]
h(x) dx (11)

=

∫
Ω

Ī(y)h(y) dy, (12)
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1 APPLIED METHODS

with Ī a weighted indicator function and h(y) the joint probability density function of the
random variables Y. An estimator of the failure probability pf is, analogue to the Monte
Carlo simulation, obtained by generating samples with respect to the joint probability
density function h(y). An unbiased estimator for the failure probability pf is given by

p̃f =
1

N

N∑
i=1

I(y)
f(y)

h(y)
(13)

with

E [p̃f ] = pf (14)

V ar [p̃f ] =
1

N

∫
Ω

I2(y)
f 2(y)

h(y)
dy −

p2
f

N
(15)

The expected value E [p̃f ] is independant of the sampling density function h(y), whereas
the variance of the estimator strongly depence on h(y). The optimal sampling density
function h(y), for which V ar [p̃f ] = 0, is given by

h(y) =
1

pf

I(y)f(y) (16)

Since the failure probability pf is a priori the unknown variable, the optimal sampling
density function h(y) is approximated as follows. The sampling density function for the
first iteration step is either the original density function f(y) or an enlarged density func-
tion, where the variance of the original function is multiplied by a factor between 1 and 3
in order to have more samples within the failure domain. The latter approach is especially
suiteable for small failure probabailities. After the first iteration the new sampling density
function h(y) is determined, so that the first and second moments coincide with the ones
of the samples, that are within the failure domain.

E[Y] = E[X|g(x) ≤ 0] (17)

E[YYT ] = E[XXT |g(x) ≤ 0] (18)

This iteration process is repeated several times. In practise 3 iterations are in general
sufficient.
The problem of this method is a robust estimation of the covariance matrix in eq.(18). If
the number of samples within the failure domain is relatively small, which can be either due
to a small number of total samples or a small failure probability, the covariance matrix
is often not positive definite, and as a result the transformation of Y to uncorrelated
random variables is not possible.
In order to avoid this problem, a restriction for the number of samples N is introduced:

n < pf ·N, (19)

where pf is the expected failure probability and n the number of random variables. This
restriction means, that at least n samples within the failure domain are expected and
that this samples can be used for the calculation of the covariance matrix of the adaptive
joint probability density function. Obviously an estimation of the failure probability is a
priori required, which might in many cases not be given. An approximation can either be
obtained by engineering experience, by other methods as e.g. FORM or by using the result
of the initial Monte Carlo simulation. For any configuration that violates this condition
no failure probability is calculated. Furthermore the number of samples within the failure
domain Nf for each iteration step is required to be larger than twice the number of random

Weimarer Optimierungs- und Stochastiktage 1.0 – 2./3. Dezember 2004

5



1 APPLIED METHODS

variables,

Nf > 2 · n. (20)

Otherwise no further iteration is performed and the failure probability is calculated from
the current iteration step.

1.5 FORM - First Order Reliability Method

FORM Shinozuka (1983); Hasofer und Lind (1974); Hohenbichler und Rackwitz (1988);
Tvedt (1983); Breitung (1991) is one of the most effective methods in reliability analysis,
since the number of required function evaluations is relatively small. In order to deter-
mine the failure probability pf in eq.(1) the limit state function g(x) can be approximated
by a Taylor expansion. The optimal expansion point is the design point xβ, which is the
point on g(x) closest to the origin. The distance β to the origin is called the reliability
index.
The hyperplane g(x) = 0 is characterized by

g(x) = −
N∑

i=1

xi

si

+ 1 = 0 (21)

Furthermore the normal
−→
b to the hyperplane is given by

[
− 1

s1
,− 1

s2
, ...,− 1

sn

]T
, which

finally gives the distance β to the origin:

β =
1√√√√ n∑

i=1

1

s2
i

=⇒
n∑

i=1

1

s2
i

=
1

β2 (22)

X2

X1

xβ

β

failure domain

g(x) = 0

ḡ(x) = 0

(0, 0)

s1

s2

Figure 2: approximation of the limit state function g(x) by a linear function ḡ(x) in
standard Gaussian space
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The random variable Z = g(X) is called the safety margin and its linear approximation
Z̄ is given by

Z̄ = ḡ(X) = −
N∑

i=1

xi

si

+ 1. (23)

It is normal distributed, since it is the sum of independant normal distributed variables.

FZ̄(z̄) = Φ

(
z̄ − E

[
Z̄
]

σZ̄

)
(24)

The statistical moments are

E
[
Z̄
]

= 1 (25)

σ2
Z̄ = E

[(
Z̄ − E

[
Z̄
])2]

= E

( N∑
i=1

Xi

si

)2


= E

[
N∑

i=1

N∑
j=1

XiXj

sisj

]
= E

[
N∑

i=1

X2
i

s2
i

]
= E

[
N∑

i=1

1

s2
i

]

=
1

β2 (26)

The failure probability is given by

pf = P [Z ≤ 0] ≈ P
[
Z̄ ≤ 0

]
(27)

=

∫ 0

−∞
fZ̄(z̄)dz̄ = FZ̄(0) (28)

= Φ

(
−E

[
Z̄
]

σZ̄

)
= Φ

(
1
1
β

)
(29)

= Φ

(
1

β

)
(30)

In general FORM gives a good approximation of the failure probability. The first
problem of this method is the determination of the design point. In SLang the routine
NLPQL is used, which is based on a sequential quadratic programming (SQP) method.
For further details see Schittkowski (1985). In certain cases (see examples reference
examples here) the determined design point deviates considerably from the theoretical
design point. A second problem is the existance of multiple design points, which can not
be handled by this method. Furthermore the probability density function is approximated
by a linear function, which results in additional errors for non linear functions.

1.6 Importance Sampling Procedure Using
Design points (ISPUD)

Another possibility to determine the sampling densitiy function within an Importance
sampling approach is used in the ISPUD algorithm Bourgund und Bucher (1986). At first
the design point is determined, which is analog to the FORM performed using NLPQL.
The mean value of the normal distibuted sampling density function is the design point,
whereas the variance is the same as the original density function. Although the method is
applicable in Gaussian as well as in original space, it seems to be advantageous to perform
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the sampling in Gaussian space, especially if the random variables are correlated or not
normal distributed. In this case the variance of the sampling density function (which
equals 1 for the random variables transformed to Gaussian space) can be increased by a
certain factor in order to spread the samples further from the design point. The failure
probability is calculated using eq.(13). The advantage of this method is its independance
with respect to the non linearity of the limit state function close to the design point,
but similar to FORM the determination of the correct design point or the existance of
multiple design points can cause errors.

1.7 Directional Sampling

For the directional sampling Bjerager (1988); Ditlevsen und Bjerager (1989) the random
variables are transformed to uncorrelated variables in Gaussian space. Starting from the
origin, which corresponds to the mean value, random direction vectors are created. In
these directions the point of failure is determined by using a bisection algorithm.
Each point x is written as x = ra, where r is the distance from the origin and a is a unit
direction vector. The vector a is described by n-1 independant variables Φi, which are
the n-dimensional spherical coordinates.

Probability density function

The joint density function of the variables X in standard Gaussian space is given by

fX(x) =
1

(2π)
n
2

e(− 1
2
xT x). (31)

Transformation of the variables to n-dimensional spherical coordinates yields

fX(x) dx = fX(x(r, φ)) rn−1 dr dφ (32)

= f
R,Φ(r, φ) dr dφ (33)

fX(x(r, φ)) rn−1 = f
R,Φ(r,Φ) is rotationally symmetric, i.e. independent of φ, since

xTx = (ra)T (ra) = r2aTa = r2. (34)

As a result the random variables R and Φ are independant.

f
R|Φ(r|φ) = fR(r) (35)

f
R,Φ(r, φ) = f

R|Φ(r|φ)fΦ(φ) = fR(r)fΦ(φ) (36)

Due to rotational symmetry of f
r,Φ, fΦ must have identical values for any φ. As a result

the probability density function is constant and its value is the inverse of the surface area
Sn of the n-dimensional unit hypersphere.

fΦ(φ) =
1

Sn

=
Γ (n

2
)

2π
n
2

(37)

Using eq.(32,33),(36) and (31) it follows, that:

fR(r) =
f

R,Φ(r, φ)

fΦ(φ)
(38)

=
Snr

n−1e

“
− r2

2

”
(2π)

n
2

(39)
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X2

X1

g(x) = 0

(0, 0)
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Figure 3: directional sampling

Probability of failure

The conditional failure probability pf (|Φ = φ) for a given direction φ can be determined
analytically

pf (|Φ = φ) =

∫ ∞

R∗(φ)

f
R,Φ(r, φ|Φ = φ) dr

=

∫ ∞

R∗(φ)

fR(r) dr

=

∫ ∞

R∗(φ)

Snr
n−1e

“
− r2

2

”
(2π)

n
2

dr

= 1− χ2
n

(
R∗(φ)2

)
, (40)

where χn is the cumulative Chi-Square-Distribution function.
Assuming, that the origin is not inside the failure domain and that there is a unique

point of failure for any direction a, the failure probability pf can be expressed as

pf =

∫
Ω

n..

∫
I(x)fX(x)dx (41)

=

∫
Sn

n−1..

∫ ∫ ∞

r=0

I(r, φ)f
R,Φ(r, φ) dr dφ (42)

=

∫
Sn

n−1..

∫ ∫ ∞

r=R∗
fR(r)fΦ(φ) dr dφ (43)

=

∫
Sn

n−1..

∫
pf (|Φ = φ)fΦ(φ) dφ. (44)
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An unbiased estimator of the failure probablity is given by

p̃f =
1

N

N∑
j=1

pf (|Φ = φ) (45)

=
1

N

N∑
j=1

[
1− χ2

n

(
R∗(φj)

2
)]

, (46)

where the sample directions φj are generated by simulating samples xj according to the
density functions in standard Gaussian space and then calculating the direction vector

as a =
xj

||xj||
, from which the angles φj can be obtain. In practice, only the direction

vector a is determined and the point of failure in this direction (R∗(a)a is determined by
a bisection algorithm. The one-dimensional integral in eq.(46) can be evaluated by using
the formular of Abramowitsch und Stegun (1972)

1− χ2
n(R∗2) = 1− χ2

n−2(R
∗2) +

(
R∗2

2

)n/2−1

e−r2/2

Γ
(

n
2

) , n > 2. (47)

For n = 1 an exponential function and for n = 2 the cumulative standard Gaussian
distribution has to be evaluated, which is done numerically.

1.8 Adaptive Directional Sampling

The adaptive directional sampling is an importance sampling method (see 1.4). After an
inital directional sampling step the simulation density function is adapted the way, that
the number of samples in the direction of the failure domain from the previous iteration
step is increased. The adaptation of the simulation density function for the second (and
further steps) is performed by using the points of the previous step. The first two statistical
moments of these points is equal to the parameters of the new simulation density function
hΦ(φ).

pf =

∫
Sn

n−1..

∫ ∫ ∞

r=R∗
fR(r)fΦ(φ) dr dφ (48)

=

∫
Sn

n−1..

∫ ∫ ∞

r=R∗
fR(r)

[
fΦ(φ)

hΦ(φ)

]
hΦ(φ) dr dφ (49)

=

∫
Sn

n−1..

∫
pf (|Φ = φ)

[
fΦ(φ)

hΦ(φ)

]
hΦ(φ) dφ (50)

An unbiased estimator of the failure probablity is given by

p̃f =
1

N

N∑
j=1

{
pf (|Φ = φj)

[
fΦ(φj)

hΦ(φj)

]}
(51)

=
1

N

N∑
j=1

{[
1− χ2

n

(
R∗(φj)

2
)] [fΦ(φj)

hΦ(φj)

]}
. (52)

For small failure probabilities it seems to be advantageous to use already for the initial
simutation an enlarged simulation density function in order to ensure, that a sufficient
number of points is within the failure domain. Otherwise the estimation of the covariance
matrix is impossible.
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1.9 Response surface methods

The idea of the response surface methods is, that the complex response of a (mechanical)
system can be approximated by a simple function of the input variables Xi. Traditionally
a polynomial approximation is used

g(x) = θ0 +
n∑

i=1

θixi +
n∑

j=1

n∑
i=k

θjkxjxk + .. + ε (53)

, where ε is an approximation error and θ are the coefficients, which are determined
by evaluating the response g(xi) for certain points xi. A linear system of equations is
obtained, which can be solved e.g. with a least squares approach. Different approaches
can be used to determine the location of the points used for the approximation of the
limit state function, e.g. by

x2i = (µ1, µ2, .., µi + σi, .., µn) (54)

x2i+1 = (µ1, µ2, .., µi − σi, .., µn) . (55)

It is often sufficient to decide, if a point is located within the safe (g(x) ≥ 0 or in the
failure domain (g(x) < 0. Applying the concept of response surfaces, the limit state
function g(x) can be approximated by

g(x) = θ0 +
n∑

i=1

θixi +
n∑

j=1

n∑
i=k

θjkxjxk + .. + ε = 0 (56)

The traditional approximation of response surfaces with polynomials has the disadvantage,
that if the number of sampling points is higher than the number of coefficients θ, the
response surface does not pass through the points itself.

1.9.1 Approximation of the limit state function by tangential hyperplanes

Another possible approximation of the response surface is the use of hyper planes. Assum-
ing, that a point p is on the failure surface. The normal n of the corresponding hyperplane
is described by the vector from a point m to p and can be written in its Hessian form as

(p− x) n = 0 (57)

An illustration of the response surface is given in figure 4. The point m has to be inside
the safe domain and can e.g. be set to the mean value of the random variables. Given a
set of points pi on the limit state function the test, whether a point x is inside the safe
domain is performed as follows.

• determine the closest point pj on the response surface by

pj =

(
pi : cos(φi) =

pix

||pi||||x||
−→ max

)
(58)

• determine the indicator function I by evaluation of eq.(57).

I(x) =

{
1 : (p− x) n ≤ 0
0 : (p− x) n > 0

(59)

to determine, if a point is inside (I=1) or outside (I=0) the failure domain.
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Figure 4: response surface approximated by hyperplanes normal to the points pi on limit
state function

1.9.2 Approximation of the limit state function using weighted radii

The approximation of the limit state function using weighted radii is based on weighting
the direction vector from a point m to a point x using the points pi on the response
surface. The weight is determined as follows. For a point x the angles φi between the
vectors (pi −m) and (x−m) are given by

cos(φi) =
(pi −m)(x−m)

||pi −m|| ||x−m||
with 0 ≤ φi < π (60)
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Figure 5: Limit state interpolation using
weighted radii.
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ear weights.
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Figure 8: Response surface by using non-
linear weights.

One possibility to determine the weight wi(x) and the scaling factor f(x) is

wi =
1

φi

(61)

(62)

f =

∑
i

||pi|| wi∑
i

wi

(63)

Finally the limit state function is approximated by

g(x) = m + f(x)
x−m

||x−m||
= 0 (64)

If only one supporting point p is present, the response surface is a hypersphere. The
weighting function has a pole for φi = 0. By introducing a small parameter ε in the
weighting function this singularity can be removed.

wi =
1

φi + ε
(65)

The disadvantage is, that the interpolation does not pass through the points of support,
but by setting ε sufficiently small, this error is negligible.
Instead of using all points of support for the calculation of the weighting factor f , it is
often sufficient to use only the m points with the highest weighting function. In general
m = n..2n, where n is the number of random variables, results in a good approximation.
It is to be noted, that the response surface should preferential be computed and analyzed
in standard Gaussian space.

The response surface function for some limit state check points using linear weights is
shown in Fig. 7. Introducing nonlinear weights such as

wij =

(
1

φij + ε

)2

will form a differentiable function in the supporting points, as shown in Fig. 8. Using
the presented interpolation, there are no difficulties in near of discontinuities, as shown
in Fig. 6, in contrast to polyhedral and polynomial response surface functions.
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1.9.3 Calculating the points of support for the limit state function

The determination of the points of support used for the approximation of the limit state
function can be performed with a deterministic, a stochastic or a combined approach.
In the deterministic approach direction vectors di from the mean value (or the origin in
standard Gaussian space) are created according to a user defined scheme, e.g. by searching
along the axis from the mean value, which results in 2n search directions(d1..d4 for a 2D-
example) or by searching along the direction to the center of all quadrants (d5..d8), which
results in 2n search directions.

d1 = (1, 0) d2 = (−1, 0) d3 = (0, 1) d4 = (0,−1)
d5 = (1, 1) d6 = (−1, 1) d7 = (−1,−1) d8 = (1,−1)

(66)

Obviously the number of directions increases dramatically as the number of random vari-
ables increases and for n = 20 already ≈ 106 search directions have to be considered.
Adaptive schemes are required for higher dimensions, where e.g. after the search along
the axis only the quadrants are considered, that are enclosed by failure points on the axis
with a high probability density function.
In a stochastic approach random direction vectors are calculated according to a probabili-
ty density function. Obviously the number of required directions in order to obtain a good
correspondance between the exact and approximated limit state function is also large for
a large number of random variables. In this investigation a combined approach has been
followed. Starting from the deterministic approach and additional stochastic direction
vectors with a uniform distribution over the hypersphere an adapted probability density
function (analog to adaptive directional sampling in section 1.8) is calculated and in the
second step the direction vectors are calculated with respect to this adapted probability
density function. The approximate location of the critical regions is thereby determined
by the deterministic approach plus additional stochastic directions, and the adaptation
increases the number of samples close to the design point.

2 Limit state functions

In most pracitcal applications the characteristics of the limit state function as e.g. its
shape are not known a priori. Furthermore the limit state function is often not an analytic
function but derived from a numerical model. It is therefore necessary to investigate the
performance of different methods with respect to the following criteria

• probability level

• number of random variables

• multiple β-points

• curvature of the limit state function

• applicability in standard/original space

• noisy limit state function

2.1 Limit state function 1

[bt] The first limit state function is used to compare the performance of the methods
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Figure 9: intervall of the obtained failure probability
[
µ± σ
µexact

]
for limit function 1 with 2

or 10 random variables and different failure probabilities

with respect to different failure probabilities and different numbers n of random variables.
The influence of other parameters is reduced by using normal distributed variables and a
linear limit state function (a hyperplane in higher dimensions).

g1 = β
√

n−
n∑

i=1

Ui = 0 (67)

Ui : independent normal distributed µ = 0, σ2 = 1

In Fig.9 the calculated failure probability for different methods is illustrated. The two
graphs for each method indicate the intervall [µ ± σ]. The parameters are obtained
by performing 100 experiments with the same conditions (approximate number of limit
state function evaluations, number of random variables, failure probability). From these
100 experiments the mean and the standard deviation are calculated. Obviously with a
number of 100 experiments only an approximation of the accuracy of the estimator can be
determined. For this limit state function the Design Point could be determined exactly
using NLPQL, and due to the linearity of the limit state function the result obtained by
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Figure 10: required number of samples for tol = 0.1 with 2 and 5 random variables for
varying probability level
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Figure 11: required number of samples for tol=0.1 for varying dimension (number of
random variables)

FORM is exact. Furthermore it is observed (as predicted theoretically), that the accuracy
of the plain Monte Carlo simulation is independent of the dimension (number of random
variables), but strongly depends on the failure probability. This is further illustrated in
Fig.10, where for a given tolerance tol = 0.1 the number of required samples is plotted as
a function of the probability level, so that

1− tol >
µ− σ

µexact

<
µ− σ

µexact

< 1 + tol. (68)
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Figure 12: limit state function g2 for varying level of probability and positive and negative
curvature

The Importance Sampling Procedure Using Design Points gives accurate results, since the
Design Point can be determined exactly. Furthermore the points on the failure surface
with a relatively high probability are all close to this designpoint. Adaptive Sampling gives
accurate results, if in the first iteration step a sufficient number of points is within the
failure domain and as a result a better estimate of the correlation between the variables is
determined. Latin Hypercube is in general slightly better than plain Monte Carlo, but the
general disadvantage (strong dependence on the probability level) is observed. Directional
Sampling is for this limit state function (hyperplane)independent of the probability level.
This is due to the fact, that by modifying the distance of the hyperplane to the origin
(which corresponds to different levels of probability) only the number of iterations, that
is needed for a random sample direction is influenced. As a result for the same number
of directions sligthly more iterations are necessary to find the limit state function.

2.2 Limit state function 2

The second limit state function is linear (LSF) in the original space, but a transformation
to standard Gaussian space results in a nonlinear function.

g2 = ±C ∓
n∑

i=1

Xi = 0 (69)

Xi : independent exponential distributed λ = 1

As illustrated in Fig.12 the LSF is for C > 0 convex with respect to the origin and concave

for C < 0. The relative mean probability with the corresponding intervall
[
µ± σ
µexact

]
is

illustrated in fig.13. For this limit state function the performance of the response surface
methodes has been additionally investigated. For 2 random variables with a high failure
probability the response surface methods a superior to all other methods. This is on the
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Figure 13: intervall of the obtained failure probability
[
µ± σ
µexact

]
for limit function 2 with 2

and 5 random variables, failure probabilities of 0.01 (LSF 2.1 and 2.2) and 0.0001(LSF 2.3
and 2.4) and different curvatures

Weimarer Optimierungs- und Stochastiktage 1.0 – 2./3. Dezember 2004

18



2 LIMIT STATE FUNCTIONS

100

1000

10000

100000

1e+06

5 10 15 20 25 30 35 40 45 50

re
qu

ire
d 

LS
FE

number of random variables

limit function: 2.1, failure_prob.: 0.01, tolerated error: 0.5

MC
LatinHC

AdapMC
ISPUD

DS
AdapDS

100

1000

10000

100000

1e+06

5 10 15 20 25 30 35 40 45 50

re
qu

ire
d 

LS
FE

number of random variables

limit function: 2.2, failure_prob.: 0.01, tolerated error: 0.5

MC
LatinHC
AdapMC

ISPUD
DS

AdapDS

100

1000

10000

100000

1e+06

5 10 15 20 25 30 35 40 45 50

re
qu

ire
d 

LS
FE

number of random variables

limit function: 2.3, failure_prob.: 0.0001, tolerated error: 0.5

MC
LatinHC

AdapMC
ISPUD

DS
AdapDS

100

1000

10000

100000

1e+06

5 10 15 20 25 30 35 40 45 50
re

qu
ire

d 
LS

FE

number of random variables

limit function: 2.4, failure_prob.: 0.0001, tolerated error: 0.5

MC
LatinHC
AdapMC

ISPUD
DS

AdapDS

MC : Monte Carlo LatinHC: Latin Hypercube AdapMC: Adaptive Monte Carlo
FORM: First Order Reliability Method ISPUD : Importance Sampling Procedure Using Design Points
DC : Directional Sampling AdapDC: Adaptive Directional Sampling

Figure 14: required number of samples for tol=0.5 for varying dimension (number of
random variables)

one hand due to the fact, that with the applied DOE scheme the design point is always
present in the response surface, and on the other hand response surfaces are a good
approximation of the real curve in low dimensions. For both response surface methods a
strong dependence on the dimension is observed. For 5 random variables the accuracy of
the estimated probability is within the range of the other methods. Further investigation
with a higher number of random variables (with this example) shows, that in the case of
a positive curvatures (LSF 2.2 and 2.4) the response surfaces can give accurate estimates
of the exact probability up to 10 variables, whereas, as already observed in fig.13 with 5
variables, the application of response surfaces for negative curvatures should be limited
to 5 dimensions.
Furthermore it is observed, that directional sampling gives precise estimates, especially in
the case of positive curvatures. This is due to the fact, that the assumption for the failure
surface for directional sampling (hyperspheres) correspond to this cases. This is further
illustrated in fig. 14, where for a given tolerance tol=0.5 the number of required samples
is plotted as a function of the probability level, so that

1− tol >
µ− σ

µexact

<
µ− σ

µexact

< 1 + tol. (70)

For the limit state functions 2.1 and 2.3 directional sampling does not give accurate results
for higher dimensions, whereas for the limit state functions 2.2 and 2.4 precise results even
with a large number of 50 variables can be obtained. Importance Sampling Using (the)
Design Point is in general the method of choice in this example. This is due to the fact,
that the design point could be determined correctly within the optimization with NLPQL.
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Figure 16: intervall of the obtained failure probability [µ± σ] for limit functions 4 and 6

Limit state function 4

g4 = 5− |X1 + X2| = 0 (71)

X1 : independent normal distributed µ = 0, σ2 = 1

X1 : independent normal distributed µ = 0, σ2 = 2

The possibility to accurately capture multiple β-points is tested with a roof-like function.
The results are illustrated in fig.16. Obviously the optimization with NLPQL determines
only one design point and as a result the approximation with FORM gives only half
of the exact failure probability. ISPUD samples with the design point as mean value.
Until a certain number of samples no sample in the failure domain corresponding to the
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opposite limit function is observed. That is the reason for ISPUD to converge towards
0.5. At about 5000 samples also samples cooresponding to the opposite limit function
are present, but this leads to a high variance of the estimator. The adaptive sampling
procedure can deal with two design points, but for a low number of samples the correlation
matrix in the first iteration step could not be determined accurately and as a result the
sampling density function in the next iteration steps deviate from the optimal sampling
density function, which leads in general to an underestimation of the failure probability.
Directional Sampling is not influenced by the presence of multiple design points, and in
the limit case of a hyper sphere as limit state function it always gives accurate results.

2.3 Limit state function 6

g6 = min(g6a, g6b, g6c) = 0 (72)

g6a = X1 + 2X3 + 2X4 + X5 − 5X6 − 5X7

g6b = X1 + 2X2 + X4 + X5 − 5X6

g6c = X2 + 2X3 + X4 − 5X7

X1..5 : independent lognormal distributed µ = 60, σ2 = 6

X6 : independent Gumbel distributed µ = 20, σ2 = 6

X7 : independent Gumbel distributed µ = 25, σ2 = 7.5

The limit state function g6 is used to verify, if the mehods can handle series systems. The
failure surface corresponds to 3 hyperplanes. The results are illustrated in fig.16. With
FORM a relative failure probability of 0.631 with 96 limit state function evalutions is
obtained. This discrepancy to the correct solution is due to the fact, that FORM can
only accurately deal with limitstate functions consisting of one hyperplane. ISPUD with
only a few samples can already give accurate results, but as further illustrated in example
11, it is essential, that the mean value of the first sampling density (β-point) is close to
the regions, that mainly contribute to the result. It is further obvious, that a certain
number of samples is required to accurately perform an adaptation (Adaptive Sampling
and Adaptive Directional Sampling).

2.4 Limit state function 10

g10 = 2− (U1 + U2) + 0.05 [sin(100U1) + cos(100U2)] (73)

Ui : independent normal distributed µ = 0, σ2 = 1

A noisy limit state function is tested by adding to a hyperplane a trigonometric term. The
factor 0.05 representing the noise is relatively high, but in order to test the influence on
the methods a worst case scenario has been favored. An illustration of the failure surface
is given in fig.17. Obviously the failure surface is not convex and b̈ubblesẅithin the safe
region corresponding to regions of failure are present. As a result all the directional
sampling methods (and furthermore the response surface methods) are theoretically not
applicable, but in practice the distance between the points with g10 = 0 for a given
sampling direction is so close, that accurate results can be obtained. All the directional
methods should theorectically (for a high number of sample directions) result in a failure
probability that is higher than the correct result, since the first point with g10 = 0 for
a given direction is searched. Due to the implementation, where a line search algorithm
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Figure 17: limit state function g10

is applied, it is not assured, that the first point is found, but any of the points with
g10 = 0 are possible. This averaging finally leads to the correct estimation of the failure
probabilities, illustrated in fig.18. The optimization with NLPQL, which is a gradient
based algorithm, sticks to a local minimum, which results in an estimate 5.21 of the relative
failure probability for FORM. For lower noise factors the optimization did determine
the exact β-point and an estimation with FORM yielded accurate results. Due to the
high failure probability the number of samples for the first iteration step within the
failure domain allowed an accurate estimation of the covariance matrix and as a result
the Adaptive Sampling Procedure is for this limit state function superior to all other
methods. It is further observed, that Latin Hypercube yields better estimates of the
probability than plain Monte Carlo. The estimated β-point from NLPQL is sufficiently
close to the exact one, so that the Importance Sampling Procedure Using (the) Design
Point still gives accurate results.

2.5 Limit state function 11

g11 = 1− |U1 + U2 + 0.5|+ 0.9(U1 + U2) (74)

Ui : independent normal distributed µ = 0, σ2 = 1

The final example is equivalent to example 4, with the difference, that the two hyperplanes
have different a different slope. This situation occurs, if a problem is nearly linear within
a certain range, but at a certain point non-linearities lead to an abrupt modification
of the response. Obviously a gradient based optimization must fail for this situation,
which leads in this case to a strong underestimation of the failure probability with FORM
(realtive failure probability 5 · 10−5). Since the distance between the real β-point and
the approximation is very large, ISPUD also fails for this example. The high failure
probability leads to accurate estimates with Adaptive Sampling, Latin Hypercube and
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2 LIMIT STATE FUNCTIONS
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Figure 18: intervall of the obtained failure probability [µ±σ] for limit functions 10 and 11
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Monte Carlo, but accurate estimators are obtained for all methods.
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3 SUMMARY AND CONCLUSION

3 Summary and Conclusion

In this paper different methods for the calculation of probabilities are investigated with
respect to several parameters as the number of random variables, the probability level,
the ability to deal with multiple design points, curvature and the shape of the limit state
function and the existance of noise in the response function. As the different influencing
parameters have a varying influence on the presented methods, there is for a specific
problem generally a method, that is superiour to all others. It is however difficult to
determine this method exactly, since the limit state function and the probability level is
not known before this procedure is applied. The choice of the appropriate method has
to be based on estimates of the influencing parameters from engineering experience. If
certain parameters are found to diverge from the assumed values, possibly a recalculation
with a different method is necessary.
The most robust methods are Monte Carlo and Latin Hypercube, whereas the latter was in
general slightly more accurate. The main drawback of these methods is, that the variance
of the estimator of probabilities is quadratically dependent on the probability level, and
as a result for low probabilities a large number of samples is required. An alternative is
the use of importance sampling techniques. The first investigated method is the Adaptive
Sampling approach, where after a first Monte Carlo simulation, possibly with adapted
variance, the sampling density is determined from the samples of the previous iteration
step within the failure domain. The method gave accurate results, if the number of
samples within the failure domain was sufficient to accurately determine the correlation,
but this number was relatively large, especially in higher dimensions, and as a result the
method was for most examples not appropriate. A second importance Sampling technique
is ISPUD (Importance Sampling Using Design Point). The sampling is centered near the
design point, which is determined in a previous optimization step. This method was in
many cases superior to all other methods, even if the design point could not be determined
exactly. Only for certain problems with a sudden failure as in example 11 the estimate of
the probability was rather erroneous. A rather low dependence on the dimension of the
problem was observed. The method is a good choice for problems, where the design point
can be accurately determined by an optimization (gradient based optimizer NLPQL).
A linearization of the limit state function at the design point with FORM (First Order
Reliability Method) gives often accurate results and at least an idea about the expected
failure probabilities and for linear problems the exact probability is obtained. FORM
requires the least number of samples compared to all other methods, but it is not able
to deal with multiple design points and the determination of the design point has to be
possible. For certain problems with a noisy response the gradient based optimzer has
failed, and for highly curved limit state function the linear assumption is not reasonable.
Finally methods based on response surfaces have been tested. It has been observed, that
for a small number of random variables (n<5) the response surface methods are accurate,
even for small failure probabilities. The number of required samples is exponentially
increasing with the number of samples, and in higher dimensions (n>10) the response
surfaces are not applicable any more. An advantage of the methods based on response
surfaces is, that the response surface itself can be investigated by the engineer.

Weimarer Optimierungs- und Stochastiktage 1.0 – 2./3. Dezember 2004

24



REFERENCES

As a conclusion the following proposal for the method of choice for a specific problem
are made:

• design point determinable by a gradient based optimization

– linear problems: FORM

– noninear problems : ISPUD

• low number of random variables (< 5− 10)

– response surfaces

• high probability level (> 10−3)

– Latin Hypercube
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