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Abstract

A large number of problems in manufacturing processes, production planning,
finance and engineering design require an understanding of potential sources of
variations and quantification of the effect of variations on product behavior and
performance. Traditionally, in engineering problems uncertainties have been formu-
lated only through coarse safety factors. Such methods often lead to overdesigned
products.

Different methods exist to describe model uncertainties and to calculate relia-
bility and safety, but they all have a limited area of application.

A new adaptive response surface method is introduced to analyse the design
reliability with high accuracy and efficiency. Whereby the surrogate model is based
on an improved moving least square approximation combined with an adaptive
design of experiment. In order to obtain a fast simulation procedure on the response
surface an adaptive importance sampling concept is used.

Two numerical examples show the applicability of this concept for highly nonlin-
ear state and limit state functions and multiple design points and separated unsafe
domains. The probabilistic analysis tasks are performed with the optiSLang software
package.

Keywords: reliability analysis, adaptive response surfaces, moving least square approx-
imation, adaptive design of experiment, adaptive importance sampling
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Property SD/Mean %

Metallic materials, yield 15
Carbon fiber composites, rupture 17
Metallic shells, buckling strength 14
Junction by screws, rivet, welding 8
Bond insert, axial load 12
Honeycomb, tension 16
Honeycomb, shear, compression 10
Honeycomb, face wrinkling 8
Launch vehicle , thrust 5
Transient loads 50
Thermal loads 7.5
Deployment shock 10
Acoustic loads 40
Vibration loads 20

Table 1: Sources of uncertainties (Klein et al. (1994)) given by standard deviation (SD)
and mean value as shown in Figure 1.

1 Introduction

Within many engineering fields, structural design must meet challenging demands of cost-
effectiveness. This leads to light-weight, highly flexible, and consequently vulnerable
structures. In order to assess potential risks associated with such a design, the structural
analysis must take into account available information on the randomness of loads and
structural properties. It means that the analysis should include reliability estimates in an
appropriate manner.

Considering the properties of the computational analysis realistically it is necessary
to take into account some uncertainty. This uncertainty can be conveniently described
in terms of probability measures, such as distribution functions. Probabilistic analy-
sis typically involves two areas of statistical variability as shown in Table 1. The first
group consists of the uncontrollable uncertainties and tolerances. These include material
property variability, manufacturing process limitations, environmental variability, such
as temperature, operating processes (misuse) and result scatter arising from deteriora-
tion. The second group – the controllable parameters – involves design configurations,
geometry, loads.

Although Monte Carlo methods are most versatile, intuitively clear, and well under-
stood, the computational cost (the number of computational runs required) in many cases
is prohibitive. Thus approximations become important, which can be based e.g. on the re-
sponse surface methods (RSM) or first/second order reliability methods (FORM/SORM).
For the feasibility of response surface approaches it is quite essential to reduce the num-
ber of variables to a tractable amount. This may require extensive sensitivity analysis in
order to identify the relevant random variables. This is particularly important for ran-
dom variables arising from discretization of random fields or processes. In this context,
close coupling between the tools for stochastic and computational analyses is essential.
Simplifications can be based on the following items

• Global variance-based sensitivity or robustness analysis of the structural response
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Figure 1: Probability density function fX(x) of the normal and lognormal distribution
with mean and standard deviation.
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Figure 2: Performance of methods for
stochastic analysis. a.) Monte Carlo
simulation (MCS), b.) Response Surface
Method (RSM), c.) First Order Reliability
Method (FORM).

F = {(F, L, Mpl) : FL ≥ Mpl} =
{(F, L, Mpl) : 1− FL

Mpl
≤ 0}

Figure 3: Structural system and several
unique failure conditions.

with respect to the random variables. Again, this aims at reducing the number of
random variables needed.

• Concentrate random sampling in the region which contributes most to the total
failure probability. This is generally called “importance sampling”. It is important
to note that most importance sampling strategies work best with a low number of
random variables.

• Approximation of the numerical response by a class of simple mathematical func-
tions. This is the so-called “response surface method”. Again, it is vital that the
number of random variables be kept small.

As a very simplistic rule-of-the-thumb, Fig. 2 gives the accuracy/speed ratio for some
solution methods as mentioned above. However, there are situations in which MCS can
be comparably fast or FORM can be comparably accurate.
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Figure 4: The state function g(x) of a numerical model is given implicitly, e.g. is result
of a finite element analysis depending on several design responses. The failure condition
leads to a unknown deterministic limit state function g(x) = 0, where fX(x) is the joint
probability density function.

2 Reliability Analysis

Safety and reliability analysis warrants the exclusion of damage and design collapse during
the life time. Probability of surviving is the numerical quantity of safety and reliability
and the probability of failure is the complement.

We can define any undesired or unsafe state of a response as an event F out of the set
of all random variables X such a way that the assign state function g(x) is less or equal
to zero. Generally, failure (i.e. an undesired or unsafe state of the response) is defined
in terms of a limit state function g(.), i.e. by the set F = {X : g(X) ≤ 0}. Frequently,
Z = g(X) is called safety margin.

As indicated in Fig. 3, the definition of the limit state function is not unique. The
failure probability is defined as the probability of the occurrence of the unsafe event F :

P (F) = P [{X : g(X) ≤ 0}] (1)

This quantity is unique, i.e. not depending on the particular choice of the limit state
function. The response behavior near the failure state is most important in the reliability
analysis. The random design parameters, such as loadings, material parameters and
geometry, are the set of basic random variables X which determine the probabilistic
response of numerical model. The failure condition is defined by a deterministic limit
state function

g(x) = g(x1, x2, . . . , xn) ≤ 0

as shown in Fig. 2. The failure probability of a design is given by

P (F) = P [X : g(X) ≤ 0] =

∫
n. . .

∫
g(x)≤0

fX(x)dx (2)
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where fX(x) is the joint probability density function of the basic random variables.

3 Response Surface Methods

3.1 Global Polynomial Approximation

Although Monte Carlo methods are most versatile, intuitively clear, and well understood,
the computational cost (the number of finite element runs required) is in many cases
prohibitive. Thus approximations become important which can be based e.g. on the
response surface method. Normally, the state function g(X) of a system response is
described implicitly, e.g. through an algorithmic procedure within finite element analysis.

Alternatively, the original state function can be approximated by a response sur-
face function g̃(x) which has polynomial form (Rackwitz (1982); Faravelli (1986); Bucher
and Bourgund (1987, 1990); Engelund and Rackwitz (1992); Rajashekhar and Ellingwod
(1993)).

A commonly used method for response value approximation is the regression analysis.
Usually, the approximation function is a first order or second order polynomial (Box
and Draper (1987); Myers (1971)). As an example in the (n = 2)-dimensional case, k-
responses (k = 1, ...,m) will be approximated using a least square quadratic polynomial
in the following form:

g̃k(x) = β1x1k + β2x2k + β11x
2
1k + β22x

2
2k + 2β12x1kx2k + εk (3)

Herein the term εk represents the approximation errors. The approximate coefficients β
can be calculated using the least square postulate

S =
m∑

k=1

ε2
k = εT ε → min

Additional, the limit state function g(x) = 0 themselves can be interpolated by second
order polynomials (Ouypornprasert and Bucher (1988); Bucher et al. (1988)).

One of the major advantages of the response surface method lies in its potential to
selectively determine the number of structural analyses of the support points. This is
especially helpful if some overall knowledge on the system behavior - particularly near to
the failure region - is a priori available. By such means the computational effort can be
substantially reduced.

On the other hand, the global approximation schemes widely used in the application
of the response surface method can be quite misleading due to the lack of information in
certain regions of the random variable space. Standard second order polynomial approx-
imations are not sufficiently flexible. So, the estimation of the failure probability using
this global approximation leads to large errors, in particular for small failure probabilities
P (F) < 10−2 and a number of random parameters of n > 5. It is therefore required to
avoid such undesirable approximation errors at reasonable computational effort.
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3.2 Adaptive Response Surface Method

3.2.1 Moving least square approximation

A commonly used approximation method with minimized the regression error within the
support point values is the moving least square method. The main advantage of this
method is the flexibility for the approximation of highly nonlinear state and limit state
functions. The proposed method is suitable for computing the reliability of complex
models and is intended to provide reasonably accurate estimates of failure probabilities
while maintaining computational efficiency.

Moving least square (MLS) functions can approximate locally clustered support point
samples with higher local approximation quality. In addition MLS improve the response
surface model using additional support points. MLS is formulated as

ŷ(x) =

nb∑
i=1

hi(x)ai(x) = hT (x) a(x) (4)

with a predefined number of basis terms nb, a vector of basis functions h and the associated
vector of the coefficients a. Lancaster and Salkauskas (1986) formulates a local MLS
approximation as

ŷ(x,xj) =

nb∑
i=1

hi(xj)ai(x) = hT (xj) a(x)

with j = 1, ..., ns support points. The approximate coefficient vector a can be calculated
using the weighted least square postulate

S(x) =
ns∑

j=1

w(x− xj) (ŷ(x,xj)− y(xj))
2

=
ns∑

j=1

w(x− xj)

(
nb∑
i=1

hi(xj)ai(x)− y(xj)

)2

= (Ha− g)TW(x)(Ha− g) → min

(5)

with the weighting function w(x− xj) and

g = [y(x1) y(x2) ... y(xns)]
T

H = [h(x1) h(x2) ... h(xns)]
T

h(xj) = [h1(xj) h2(xj) ... hnb
(xj)]

T

W(x) = diag[w(x− x1) w(x− x2) ... w(x− xns)]

The least square error S(x) may be a minimum in case that the partial gradients are zero.

∂S(x)

∂a
= 0

So using the equation (5) a linear equation system gives an estimation of the coefficient
vector a

a(x) = M−1(x) B(x) g (6)
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with

M(x) = HT W(x) H

B(x) = HT W(x)

Cause the matrix of the basis function M(x) should be non-singular always a sufficient
number of ns immediate neighbor support points have to be available. The number must
be at least as large as number of the basis terms. The equation (6) inserted in (4) gives
the approximation function

ŷ(x) = hT (x) M−1(x) B(x) g

An accurate as possible approximation quality requires a weighting function which is
larger than zero w(x − xj) > 0 and monotonically decreasing w(‖x − xj‖) inside of a
small sub space Ωs ⊂ Ω. So the influence of supports far from the actual coordinates
is unimportant. A uniform weighting is given by a symmetry condition w(x − xj) =
w(xj − x) = w(‖x− xj‖). Usually, an exponential function is used in this way:

w(‖x− xj‖) =

 e
−

0@‖x− xj‖
Dα

1A2

‖x− xj‖ ≤ D
0 ‖x− xj‖ > D

(7)

with a constant

α =
1√

− log 0.001

and a influence radius D to choose. It is obvious that the smaller D the better the
response values of the support points fit the given values. But as mentioned above at
least nb support points have to be available in every point to be approximated. Therefore
it is possible that a D has to be chosen which leads to a large shape function error at the
support points.

To avoid these problems a new regularized weighting function was introduced by Most
and Bucher (2005):

wR(‖x− xj‖) =


ŵR(‖x− xj‖)

ns∑
i=1

ŵR(‖x− xi‖)
‖x− xj‖ ≤ D

0 ‖x− xj‖ > D

(8)

with

ŵR(d) =

((
d

D

)2

+ ε

)−2

− (1 + ε)−2

(ε)−2 − (1 + ε)−2
; ε � 1 (9)

It is recommended by the authors to use the value

ε = 10−5

This new regularized weighting function works better than the exponential function. But
if the ratio of the minimal distance among the supports to the extent of areas where are
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Table 2: Numbers of required support points for different DOE schemes
Number of support pointsa

Linear approximation Quadratic approximationb

Number of Koshal D– Full Koshal D– Full Central
Variables Linear optimalc factorial Quadr. optimald factorial composite

n (linear) (m = 2) (quadr.) (m = 3) (CCD)

1 2 2 2 3 3 3 3
2 3 4 4 6 9 9 9
3 4 6 8 10 15 27 15
4 5 8 16 15 23 81 25
5 6 9 32 21 32 243 43
6 7 11 64 28 42 729 77
7 8 12 128 36 54 2187 143
8 9 14 256 45 68 6561 273
9 10 15 512 55 83 19683 531

10 11 17 1024 66 99 59049 1045
11 12 18 2048 78 117 177147 2071
12 13 20 4096 91 137 531441 4121
13 14 21 8192 105 158 1594323 8219
14 15 23 16384 120 180 4782969 16413
15 16 24 32768 136 204 14348907 32799

aIncluding only one center point (nc = 1).
bAlso usable with linear approximation approach.
cBased on full factorial DOE (m = 2), with 1.5 times linear koshal designs.
dBased on full factorial DOE (m = 3), with 1.5 times quadratic koshal designs.

no supports becomes worse the same problems occur again. As a matter of fact a large D
is needed to approximate for coordinates where no support points are around and a small
D is needed for coordinates where are a lot of support points in order to reach a minimal
approximation error. To comply with this conditions it is necessary to use a function d(x)
for the influence radius instead of a constant D.

3.2.2 Adaptive design of experiment

In particular, these response surfaces can be adaptively refined to consistently increase the
accuracy of the estimated failure probability. This is especially suitable for the reliability
analysis of complex nonlinear structures. An arbitrary number of check points even in high
local concentration can be used without approximation problems. Using deterministic
design of experiment, the necessary number of support points become very high with an
increasing number of random variables, as shown in Table 2.

To decrease the number of support points in an optimized way, the so called D-
optimality criterion is used. A discussion of this criterion is presented by Box and Draper
(1971). The effectiveness of a design in satisfying the minimum variance (D-Optimal)
criterion is expressed by the D-Efficiency of the design. In Myers and Montgomery (1995),
more exact specifications of the D-Optimal criteria and further criteria called alphabetic
optimality criteria are described. However, the first design of experiment in the first
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Figure 5: Adaptive design of experiment in the random space.

iteration should explore the random space including safe and unsafe domain as accurate
as possible. A possible approach is given in Klingmüller and Bourgund (1992) with

xi = x̄i ± fσxi

whereby
f = Φ−1(P (F)) = 3, . . . , 5

is a factor depending on the assumed failure probability. Bucher and Bourgund (1987)
give an efficient possibility to adaption a design of experiment in the next iterations with

xM = x̄ + (xD − x̄)
g(x̄)

g(x̄)− g(xD)

with
xD = E[X|g(x) ≤ 0]

as shown in Figure 3.2.1. This is achieved by a combination of random search strate-
gies (based on the adaptive sampling approach, see Bucher (1988) for details) as well as
deterministic search refinement. In such a way for the most practical examples 3 till 6
iteration steps are necessary for a sufficient convergence. So this adaptive design of ex-
periment using a D-optimal linear or quadratic design in combination with the improved
moving least square approximation is suitable up to n ≤ 20 random parameters.

4 Examples

4.1 The Quattro Function

Within the first example the different results of the presented adaptive response surface
method in comparison with a classic global response surface method are given. The state
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Figure 6: The Quattro Function. Ana-
lytical state function g(x) and limit state
function g(x) = 0 in combination with di-
rect importance adaptive sampling.

Figure 7: The limit state function g(x) =
0 is a high-curved nonlinear one. The ran-
dom parameters X1 and X2 are normal dis-
tributed variables with mean X̄1 = −3.9,
and X̄2 = 1.5 and standard deviation
σX1 = σX2 = 1.

Figure 8: Approximated state function
g(x) and limit state function g(x) = 0 us-
ing the global 2nd order polynomial ap-
proximation using a global central compos-
ite design of experiment.

Figure 9: Using the global 2nd order poly-
nomial approximation a wrong most proba-
bility failure domain is identified using im-
portance adaptive sampling.
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Figure 10: Approximated state function
g(x) and limit state function g(x) = 0 us-
ing the adaptive response surfaces with im-
portance adaptive sampling and the first
design of experiment (central composite de-
sign).

Figure 11: Adaptive moving least square
approximation with first and second design
of experiment.

Figure 12: Adaptive moving least square
approximation with first till third design of
experiment.

Figure 13: Adaptive moving least square
approximation with first till fourth design
of experiment.
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Number of Failure Variance of the Accuracy
state function probability estimation σ2

P̄ (F)
error %

evaluations

Direct adaptive 4000 4.8907 · 10−6 1.5813 · 10−7 0
importance sampling
Global polynomial 2nd 9 2.1563 · 10−10 2.5303 · 10−11 2268000
order approximation
Adaptive response 9 7.9728 · 10−11 6.0763 · 10−12 6134100
surface approximation 18 4.47 · 10−6 1.1713 · 10−7 9

27 4.4096 · 10−6 1.214 · 10−7 11
36 4.6044 · 10−6 1.1337 · 10−7 6

Table 3: Results of the failure probability of the Quattro Function depending on the
applied analysis method.
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is a two-dimensional fourth order polynomial, as shown in Figure 6. Furthermore, the
limit state function g(x) = 0 is a high-curved nonlinear one, as shown in Figure 7. The
random parameters X1 and X2 are normal distributed variables with mean X̄1 = −3.9,
and X̄2 = 1.5 and standard deviation σX1 = σX2 = 1. In order to obtain the reference
failure probability a direct importance adaptive sampling is done with N = 2000 samples,
two iterations and an initial variance multiplier σ(i=1) = 3. The given failure probability is
P (F) = 4.8907 ·10−6 with a standard error of σP̄ (F) = 1.5813 ·10−7. In addition, the same
adaptive sampling procedure is used to calculate the failure probability on the response
surfaces.

For this example, the approximation using the global 2nd order polynomial approxi-
mation and a global central composite design of experiment leads to an error of 2268000
% in calculation the failure probability, as shown in the Figures 8 and 9. Using the global
2nd order polynomial approximation a wrong most probability failure domain is identified
using importance adaptive sampling.

Applying the new adaptive response surface method to this state function, as shown in
Figures 10 till 13, leads to accurate estimation of the failure probability already after the
first adaption with N = 18 state function evaluations. In summary, using three adaptions
of the central composite design with in total N = 36 state function evaluations the error
of the given failure probability is 6% only (see Table 3 for details).
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Figure 14: The Himmelblau Function.
Analytical state function g(x) and limit
state function g(x) = 0 with direct impor-
tance adaptive sampling. The random pa-
rameters X1 and X2 are normal distributed
variables with mean X̄1 = −0.6, and X̄2 =
0 and standard deviation σX1 = σX2 = 1.

Figure 15: Approximated state function
g(x) and limit state function g(x) = 0 us-
ing the adaptive response surfaces with im-
portance adaptive sampling and the first
design of experiment (full factorial design).

Figure 16: Adaptive moving least square
approximation with first and second (cen-
tral composite) design of experiment.

Figure 17: Adaptive moving least square
approximation with first till third (central
composite) design of experiment.
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Figure 18: Adaptive moving least square
approximation with first till fourth (central
composite) design of experiment.

Figure 19: Adaptive moving least square
approximation with first till fifth (central
composite) design of experiment.

Number of Failure Variance of the Accuracy
state function probability estimation σ2

P̄ (F)
error %

evaluations

Direct adaptive 4000 3.6817 · 10−6 3.5149 · 10−7 0
importance sampling
Adaptive response 25 4.5943 · 10−4 2.6486 · 10−5 99
surface approximation 34 1.05 · 10−4 4.2485 · 10−6 96

43 3.3566 · 10−6 7.2673 · 10−7 10
52 7.9314 · 10−6 1.0342 · 10−6 54
61 3.7946 · 10−6 3.3768 · 10−7 3

Table 4: Results of the failure probability of the Himmelblau Function depending on the
applied analysis method.
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4.2 The Himmelblau Function

A commonly used fourth order polynomial test function within the nonlinear optimization
is the so-called Himmelblau (1972) function

g(x1, x2) =

(
x2

1

1.81
+

x2

1.81
− 11

)2

+

(
x1

1.81
+

x2
2

1.81
− 7

)2

− 50

with multiple separated unsafe domains. The Figure 14 shows the Himmelblau state
function g(x) and limit state function g(x) = 0. The random parameters X1 and X2 are
normal distributed variables with mean X̄1 = −0.6, and X̄2 = 0 and standard deviation
σX1 = σX2 = 1. Using direct importance adaptive sampling the reference failure proba-
bility is P (F) = 3.6817 · 106 with a standard error of σP̄ (F) = 3.5149 · 10−7. Contingent
on the existence of multiple separated unsafe domains other analysis methods existing
in optiSLang like directional sampling (Bjerager (1988); Ditlevsen and Bjerager (1989);
Melchers (1990)) or FORM and ISPUD are not applicable.

Applying adaptive response surface method to this state function, as shown in Figures
15 till 19, leads to accurate estimation of the failure probability already after the fourth
adaption with in total N = 61 state function evaluations. The Figure 15 shows the
approximated state function g(x) and limit state function g(x) = 0 using the first design
of experiment (full factorial design with N = 25 state function evaluations). In summary,
using four adaptions of the central composite design with N = 9 state function evaluations
per iteration the error of the given failure probability is 3% only (see Table 4 for details).

5 Concluding Remarks

A new adaptive response surface method is introduced to analyse the design reliability
with high accuracy and efficiency. Whereby the surrogate model is based on an improved
moving least square approximation combined with an adaptive design of experiment. In
order to obtain a fast simulation procedure on the response surface an adaptive importance
sampling concept is used. In this sense, the proposed method is very robust and efficient
for every safety level up to n ≤ 20 random parameters and combine the advantages of an
adaptive design of experiment, adaptive sampling and efficient response surface methods.
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C. G. Bucher, Y. M. Chen, and G. I. Schuëller. Time variant reliability analysis utilizing
response surface approach. In P. Thoft-Christensen, editor, Proc., 2nd IFIP Working
Conference on Reliability and Optimization of Structural Systems, pages 1 – 14. Springer
Verlag, Berlin,Germany, 1988.

O. Ditlevsen and P. Bjerager. Plastic reliability analysis by directional simulation. Journal
of Engineering Mechanics, ASCE, Vol. 115(No. 6):1347 – 1362, 1989.

S. Engelund and R. Rackwitz. Experiences with experimental design schemes for failure
surface estimation and reliability. In Y. K. Lin, editor, ASCE Specialty Conference on
Probabilistic Mechanics and Structural and Geotechnical Reliability, pages 244 – 247.
Proceedings, 6th ASCE, New York,USA, 1992.

L. Faravelli. Response Surface Approach for Reliability Analysis. Pubblicazione n. 160,
Dipartimento di Meccanica Strutturale Dell’ Universita di Pavia, PaviaItaly, 1986.

D. M. Himmelblau. Applied Nonlinear Programming. McGraw Hill Book Company, 1972.
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