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Summary 

One of the most important tasks of vehicle development is the steady improve-
ment of passenger passive safety systems. In reality significant result scatter can 
be observed when performing crash-tests. Cause of this scatter of important vehi-
cle performance variables is scatter of variables concerning the dimensioning of 
passenger passive safety systems, vehicle structure and testing conditions. A com-
putational robustness evaluation of important result variables can only be obtained 
by integrating stochastic simulation methods into virtual product design processes 
[1-2]. Primary result of the robustness evaluations is the calculation of the scatter 
of performance variables and of the connected probability of achieving safety 
goals. Secondary result is the investigation of the numerical stability of the mod-
els and identification of the input scatter, which is responsible for the output scat-
ter. In this paper the fundamentals of computational robustness evaluation are ex-
plained compendiously and the experience gained by the systematical introduction 
of computational robustness evaluations at BMW AG [3] is discussed. Because of 
the complexity of finite element-models their robustness has to be examined with 
great care. Using a robustness evaluation for the front-crash load case of the UL-
SAB-study an approach for identification and quantification of numerical noise is 
presented.  
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1 Introduction 

In the past deterministic models were used by multi-body or finite element pro-
grams for dimensioning of passenger passive safety systems. In reality, however, 
significant scatter can be observed when performing crash-tests. Cause of this 
scatter of important vehicle performance variables is scatter of variables concern-
ing the dimensioning of passive safety systems, vehicle structure, the material, the 
crash-test dummies, the loads and the testing conditions. This results in the neces-
sity to pre-compute not only single values but also to be able to extract informa-
tion about the scattering of important evaluation criteria. 
 
The necessity of integration of stochastic simulation methods is determined by 
further trends in virtual product design. 
• By increasing optimization, designs can reach their limits and become very 

sensitive towards scattering 
• Because hardware cycles occur later and less often, the influence of scatter, 

which was still prominent in hardware tests and its influence thereby was at 
least detected by single tests, has to be taken into account in virtual product de-
sign. 

• If larger changes in construction are made within very short time (high innova-
tion speed) and more and more complex component systems concur the a priori 
knowledge (experience) about reliable functionality possibly is very small. 
Therefore the robustness of the systems has to be determined using virtual 
models. 

• Substantial vehicle concept decisions have to be made in an early stage of de-
velopment basing on virtual dimensioning. This requires best possible knowl-
edge about the degree of fulfilling the goals (laws, consumer ratings) and re-
spectively a quantitative estimation of the remaining risk. 

 
Robustness evaluations using variation analysis [1] are suitable since it is not the 
securing of small transgression probabilities that is most important in evaluation 
of robustness concerning passenger safety. Primary goal of robustness evaluations 
using variation analysis is the prognosis of a variation range of significant re-
sponse variables and their evaluation using standards of „robust“ restraint sys-
tems. In passive passenger safety limits are defined by the legislator and the vehi-
cle developers set their own limits with a security distance to the statuary limit 
values. Furthermore it is a goal that vehicles reach an as good evaluation as possi-
ble in tests by consumer protection (e.g. EURONCAP). These requirements 
should be met by the majority of the vehicles. However detecting rare transgres-
sion probabilities is not the main goal at present. If small probabilities (for exam-
ple less than 1 in 1000) are to be verified one should use methods from reliability 
analysis [4-7]. Because the methods of reliability analysis are only feasible in 
small parameter spaces, robustness evaluations using variation analysis are a nec-
essary preliminary stage for the reduction of parameters. 
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Secondary goal of robustness evaluations is the identification of correlations be-
tween input- and output-scatter and a quantification of the thereby explainable 
components of the variation of result variables as well as the quantification of the 
influence of “numerical” noise on the output scatter. 
 

2 Computational Robustness Evaluation using 
Variation Analysis 

For evaluation of robustness all potential input scatter of material, car or test con-
dition are introduced to virtual product design process by using scattering input 
variables in the numerical models. Using appropriate sampling methods a sample 
set of n-possible vehicles and n-possible crash test conditions are generated and 
then computed. After the computation the sample set is then evaluated using sta-
tistical methods for estimation of variance and correlation. In order to estimate the 
scatter of the result variables from the sample usually mean value, standard devia-
tion, coefficient of variation and the range of variation (min/max value) are de-
termined for every important response variable. If the detected ranges of variation 
lie to close to the limit values or even exceed these, one has to ask for the fre-
quency (probability) of exceeding the limits. If overstepping occurs in the calcu-
lated support point set, the frequency can be counted. In statistics one would talk 
about determining the empirical probabilities directly from the histogram. Alter-
natively distribution functions of the result variables can be assumed and the 
probabilities can then be computed from the characteristic values of the distribu-
tion function. 
 
For significantly scattered result variables or transgression of limits the responsi-
ble input scatter is identified using correlation analysis. For this purpose pair wise 
linear and quadratic correlation coefficients of result and input scatter are com-
puted. The correlation coefficients can obtain values between 0 and 1 (-1) and 
show the pair wise correlation between a single input scatter and a single output 
scatter. For identification of mechanisms in which multiple input scattering affects 
on output scatter the principal components (the eigenvectors of the correlation-
matrices) can be evaluated.  
 
In the following it is estimated how much of the result variation can be explained 
using the identified (linear and quadratic) correlations. This is done by using 
measures of determination [8]. The determinedness of a result variable regarding 
the variation of all input scatter describes which percentage of the result variation 
can be explained by the found correlations to the input variables. If the coefficient 
of determination of a result variable is high (>90%) the fundamental interrelations 
can be described using the underlying correlation hypothesis. The smaller the co-
efficients of determination are the larger the part of the variation of result vari-
ables becomes which can not yet be explained by the correlation hypothesis (e.g. 
linear and quadratic). Typically then non-linear correlations, clustering, “outliers” 
or a high amount of “numerical noise” exist. This way the measure of determina-
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tion therefore provides information on the possible ratio of numerical noise and 
should be used as an important quality measure for the used modeling. In the ro-
bustness evaluations performed so far it could be detected that for coefficients of 
determination larger than 80% the influence of numerical noise on the perform-
ance variables was acceptable.  
 
Choice and complexity of the sampling methods have to be adjusted according to 
the important statistical measures which are to be estimated. Normally the sam-
pling method is adjusted according to a reliable identification of linear coeffi-
cients of correlation. Thereby the number of computations for robustness evalua-
tions of restraint systems results in about 100 to 200 per load case that is to evalu-
ate [8]. Suitable method for this is a Latin-Hypercube-method which fulfills the 
input distribution function as well as it minimizes the deviation between defined 
and created input correlations. 

3 Statistic Description of Input Variables 
Important scattering input variables in virtual dimensioning of restraint systems 
are e.g. scattering of airbag parameters, scattering in the seat-belt-system and of 
the seat positions of the crash-test-dummy or scattering of the structural compo-
nents. 
 
The reliability of the prognosis of the output scatterings is explicitly connected to 
the closeness to reality of the definition of the input scatterings. In practical appli-
cations one can often not assume that all significant input scatterings are captured 
close to reality at the beginning of stochastic computations. Therefore one will 
realistically start using relatively rough assumptions concerning the input scatter 
and the input uncertainties respectively and then improve the knowledge on the 
significant input scatter step by step. 
 
Input scatter is described using distribution functions. Important distribution func-
tion types are e.g. uniform distribution for friction values, normal distribution for 
mass flow values or log-normal distribution for material strength. If correlations 
between single scattering input variables exist, they have to be taken into account 
for the input information using adequate correlation models. 
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Figure 1: Correlation between the scattering tensile strength and the yield strength 

of steel 
 
As an example for important interrelations between input scatter the correlation 
between tensile strength and the yield strength of steel shall be mentioned. In this 
case one would determine the linear correlation coefficient between both of the 
scattering input variables for example from available experimental data (shown in 
figure 1 with a correlation coefficient of 0.66) and consider it as important input 
information in sampling methods.  
 

4 Requirements for successful Integration of 
Robustness Evaluations into the Virtual Product 
Development Process 

For a systematic introduction of stochastic methods of computations the following 
significant boundary conditions have to be met: 
• Numerical model and simulation methods have to posses the ability of progno-

sis and therefore have to be able to map all significant physical phenomena and 
compare them to single experimental data. The computational process is to be 
parameterized concerning the input scatter and has to be processed fully auto-
matically. 

• The existing knowledge on input scatter and uncertainties for example in 
boundary conditions, material values or load characteristics are to be trans-
ferred to an appropriate statistical description and have to be integrated in vir-
tual product design as significant input information for stochastic analysis. 

• A stochastic method has to be used for robustness evaluations which make sure 
that the errors within the estimation of the statistical characteristics are small 
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enough and therefore that the results can be used as reliable foundation of a ro-
bustness evaluation. 

• For evaluation of the robustness meaningful, reliable statistical characteristics 
have to be derived. The evaluation process is to be automatized and standard-
ized.  

 
Furthermore one can assume that a consequence introduction of stochastic compu-
tation methods can be divided into two phases. 
 
Phase 1: Scatter and uncertainties of input variables are estimated from a few 
measurements and empirical values: 
• Transfer of existing knowledge on input scatter and uncertainties of testing 

conditions in distribution functions as suitable input for stochastic methods. 
• Robustness evaluation of important crash-test load cases, estimation of the 

variance of important vehicle performance variables, inspection if limit values 
are exceeded by the variation of the performance variables. 

• Inspection of model robustness/stability using coefficients of determination. 
• Extraction of most significant correlations between scattering input variables 

and important performance variables as well as the matching of these mecha-
nisms with expectations and knowledge based on the experiments.  

 
Within and respectively as result of phase 1 the following has to be discussed and 
arranged: 
• At which point in time in the virtual development process robustness evalua-

tions of components, modules or whole vehicles are performed 
• For which input scatter the assumptions about the scatter have to be verified 
• How scatter of critical performance variables can be reduced or relocated 
• Which exceeding probabilities are tolerable for the performance variables 
 
Phase 2: sensitive scattering input variables are known and the assumptions about 
their scatter are verified: 
• With secured knowledge about the input scatter robustness evaluations are per-

formed at predefined milestones of virtual product process 
• Assuming that all important input scatter were considered close to reality and 

that the numerical models show negligible numerical noise then the estimate of 
the scatter of important input variables is trustworthy. 

 
In the second year of the serial use of stochastic analysis in passenger safety simu-
lation at BMW we currently are in phase 2. The following added value could be 
obtained concerning dimensioning and increase of the robustness of the restraint 
systems: 
• Development of a better understanding of the transmission mechanisms of in-

put scatter on significant performance variables 
• Identification of the significant scattering input parameters and securing of 

knowledge about their scattering 
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• Identification of model weaknesses and reduction of numerical noise of signifi-
cant vehicle performance variables. Thereby increasing the model robust-
ness/stability and of the quality of prognosis of crash-test computations 

• Recognizing robustness problems of the restraint systems and in cases of high 
exceeding of limits with the consequence of redesign of components.  

4.1 On Numerical Robustness of Crash-Test Computations 
The inspection of numerical robustness of numerical models of crash-test compu-
tation results from the experience, that the variation of numerical parameters of 
the approximation method or the variation of demonstrable insignificant physical 
parameters can lead to large scattering of the result variables or respectively lead 
to obviously unfeasible results. If n-designs are to be computed and their variation 
is to be evaluated statistically, the question arises which proportion of the result-
ing variation can be attributed to problems of the approximation method and the 
numerical modeling respectively. 
 
The quantitative influence of numerical noise on the result variable can be esti-
mated using coefficients of determination of the robustness evaluation to naturally 
occurring scatter. If the measure of determination of the robustness evaluation is 
high, only a small proportion of unexplained variation, which could be caused by 
numerical noise, is left. In order to use the measure of determination of result 
variables as a quantitative measure for the numerical model robustness, the pro-
portion of determination of the found correlations has to be estimated with suffi-
cient statistical security. This formulates standards for the sampling method, the 
number of computations and the statistical algorithms for the evaluation of meas-
ures of determination. After very positive experience of evaluating the influence 
of numerical noise via measures of determination from robustness evaluation this 
method is for serial production at BMW since 2006 [3]. For “numerically” robust 
models measures of determination considering linear and quadratic correlations 
and after elimination of outliers and clustering of over 80% could be determined. 
If the measures of determination decreased significantly below 80% it was usually 
an indicator that the corresponding result variable possesses a significant amount 
of numerical noise. Cause here for were insufficiencies in the result extraction and 
especially insufficiencies of the numerical models interacting with the approxima-
tion methods. After repairing the numerical modeling the measure of determina-
tion usually increased to over 80%. 
 
It shall be stated that in theory it is impossible to determine without doubt the 
proportion of numerical noise.  
 
The subject of bifurcation points surely is to be discussed separately. For the pur-
pose of robust designs one would want to vastly avoid systems with bifurcation 
points, which can be traversed in multiple ways within the scatter range of input 
variables and then lead to significantly different system responses. As a matter of 
principle one would, however, have to be able to find correlations between indica-
tors of bifurcation or results heavily influenced by bifurcation and the input scat-
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ter, otherwise the bifurcation occurs at random which implies that we are dealing 
with a very sensitive dynamic system.  
 
For robust designs the correlations between input variation and output variation 
should basically be identifiable with high certainty. These correlations also show 
the possibilities for influencing the result scatter. In order to reduce transgression 
probabilities it for example is possible to reposition the mean value in the linear 
case or for quadratic correlations to reduce input scatter or to change the transmis-
sion behavior between input and output scatter.  
 
This diagnosis of course excludes systematical errors or the inability to actually 
map significant physical effects of input scatter on output scatter. The fundamen-
tal prognosis ability of the numerical models has to be verified using experimental 
data. 
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5 Practical Application 

5.1 Robustness Evaluation for the Load Case Front-Crash 
FMVSS 208 

Since beginning of 2006 computational robustness evaluations using optiSLang 
[9] are a defined milestone of serial production at BMW AG executed for all rele-
vant load cases for dimensioning of passive safety systems [3]. The procedure is 
exemplary introduced for the load case FMVSS 208 (front-crash 40 km/h, un-
belted, against steep wall). The robustness concerning significant evaluation pa-
rameters of driver and passenger was tested. 
 

 
Figure 2: Simulation Passenger Safety Load Case FMVSS 208 

 
The model was created and computed in MADYMO. A multi-body-formulation 
was used for most parts of the restraint system and the dummy and a finite-
element-formulation was used for the airbag. For the robustness evaluation 200 
variants were created in optiSLang using Latin Hypercube Sampling and then 
computed. Overall 27 physical parameters of the multi-body/finite-element-
modeling were varied and 18 dummy result variables were analyzed in the robust-
ness evaluation. 
For the definition of the scatter uniform distributions and normal distributions 
with cut offs at 2 or 3 Sigma Level were used. The following scattering input pa-
rameters were considered in robustness evaluation: 

• Scattering of the time to fire of airbag and load-limiter 
• Scattering of the dummy seat position 
• Scattering of mass flow, permeability of the airbag 
• Scattering by the load limiter 
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• Scattering of friction between dummy and airbag, airbag and steering wheel as 
well as between dummy and seat 

• Scattering of impact puls 
• Scattering of feet space, foot rest, pedal 
 
The following result variables were examined in the robustness evaluation: 
• Head resultant acceleration 3 ms  
• Chest resultant acceleration 3 ms  
• Pelvis resultant acceleration 3 ms  
• HIC15 head injury criterion 15 ms 
• Head displacement x 
• Pelvis displacement x 
• Chest deflection 
• Steering column displacement 
• Neck compression 
• Neck tension 
• Neck injury: tension-extension 
• Neck injury: tension-flexion 
• Neck injury: compression-extension 
• Neck injury: compression-flexion 
• Distance head – roof (virtual penetration) 
 
Most important result of the robustness evaluation are the predicted intervals of 
variation for the scatter of the evaluation parameters (figure 3). Even though no 
limits were exceeded the scatter of single evaluation parameters is high.   
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Figure 3: Visualization of the Variation Ranges 
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Of the 29 sources of input scatter only 9 input variables shows noteworthy corre-
lations to the output variables. As can be seen in the matrix of the linear correla-
tions (figure 4) not for all significant parameters linear correlations (with coeffi-
cient of correlation > 0.50) to the input scatter could be found. This can be an in-
dicator for a high proportion of numerical noise. Therefore it was investigated if 
higher measures of determination could be achieved by using quadratic correla-
tions and respectively eliminating of non-linearities (outliers or clustering). How-
ever, no correlations, which significantly contribute to the measure of determina-
tion, besides linear correlations could be identified. Thereby the determination of 
the individual result variables strongly varies. For example the maximum force in 
the femur (figure 5) can be explained with a high determination (90% figure 5), 
while the variation of the HIC-value can only be explained to less than 50% (fig-
ure 6). 
 

 
 

Figure 4: Matrix of Linear Correlations 
 
Therefore a numerical robustness evaluation was performed using the reference 
model and 5 to 10% of variation of some numerical parameters. Overall 8 numeri-
cal parameters, e.g. scaling-factors of the time-steps, the contacts or the “numeri-
cal” damping-factors of the multi-body/finite-element-modeling were varied. The 
scattering of 18 result variables was evaluated. 
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Figure 5: Measure of Determination Femur Force Right 

 

 
Figure 6: Measure of Determination HIC15 

 
The resulting scatter of the evaluation parameters was compared with the scatter 
of the physical robustness evaluation (figure 7). As expected the numerical noise 
of variables with high determination of the physical robustness evaluation, like the 
femur forces were of negligible proportion. For the evaluation parameter HIC15 
as expected significant scatter occurred caused by the variation of numerical pa-
rameters. The large scattering of the chest-values in comparison to the physical 
robustness evaluation are also critical in this model. Although these evaluation 
parameters show measures of determination of about 80% in the physical robust-
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ness evaluation their scatter caused by the variation of numerical parameters is 
very high. As can be seen in this example, one can not assume that the measure of 
numerical noise related to the variation interval, can be linearly obtained from the 
measures of determination.  
If noteworthy variations occur within the numerical robustness evaluations, one 
can assume that the prognosis of scatter of the physical robustness evaluation 
tends to be too high. No noticeable correlations (linear or quadratic) of single in-
put variations of numerical parameters concerning the observed scattering of the 
evaluation parameters. Thereby the cause for the numerical noise could not be di-
rectly identified from correlation analysis. But of course by checking designs with 
minimal and maximal performance values often sources of numerical problems 
can be identified. 
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Figure 7: Comparison of the Variation Intervals of physical and numerical robust-

ness evaluation 
 
The robustness evaluation in the early stage of vehicle development indeed 
showed that the evaluation parameters including the consideration of input scatter-
ings lie below target limit values. At the same time it was shown that the multi-
body/finite-element-model shows a high amount of numerical noise for this load 
case, which leads to a high amount of uncertainty within the prognosis of deter-
ministic results (single values) or of stochastic values (variation ranges). There-
fore until the next milestone the models are reworked with the goal to reduce the 
numerical noise. 
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5.2 Robustness Evaluation of a front-crash load-case of the 
ULSAB Car Body 

On request of the FAT working group 27 of the German automobile industry a 
front-crash load-case of the ULSAB car body with 14 km/h against a rigid wall 
(figure 1) was evaluated concerning robustness. The goal of the study was to 
showcase the possibilities of computational robustness evaluations in crashwor-
thiness. LSDYNA was used for FEM computing. optiSLang [9] was used for the 
process automation and for the robustness evaluation. Evaluation parameters of 
the robustness study were energy, forces and deformation of the main crash boxes 
as well as the relative displacement of the front wall. Input scatter were sheet 
thickness and yield stress of overall 36 sheet metal components in the front end, 
the coefficient of friction as well as the test boundary conditions barrier impact 
speed and barrier impact angle. 
 

 
Figure 8: Front-Crash ULSAB Car Body, Side View 

 

 
Figure 9: Front-Crash ULSAB Car Body, Top View 
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ormal distribution was assumed for the scattering value sheet metal thickness 

 
sing correlation analysis and evaluation of the coefficients of determination the 

reasons for the scatter of the result variables were investigated. While high meas-

N
and a lognormal distribution for the scattering value tensile strength and yield 
strength. For the scattering of the test boundary conditions a cut off normal distri-
bution was used and for the coefficient of friction a uniform distribution was used. 
For the robustness evaluation 169 variants of the 84 overall input scatterings were 
created using Latin Hypercube Sampling. During the evaluation of the variation 
intervals significantly too large scatter could be detected concerning nodal intru-
sion values (figure 10/11). 
 

 
Figure 10: Histogram of the Intrusion at Node 1114 

 

 
Figure 11: Histogram of the Intrusion at Node 1116 

U
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ures of determination of > 90% were calculated for some evaluation parameters, 
like for the maximum force in the crash box (figure 12), the measures of determi-
nation of the front wall intrusion considering linear and quadratic correlations 
were very small, lying in the rang of about 50% to 60% (figure 13). This leads to 
the question whether the high proportion of inexplicable intrusion is caused by 
non-linearity of the crash analysis or if it is caused by numerical problems. 
 

 
 

Figure 12: Measures of Determination of the Maximum Forces in the Crash Box 
 

 
Figure 13: Measure of Determination of Intrusion at Node 1114 

 
In order rameter 

ace wa r 

ness and yield strength of crash box, further sheet metal component in the load 

to determine the significance of the statistical measures the pa
s reduced to those 15 variables, which had shown significant linear osp

quadratic correlations in the 84-dimensional response space and a second robust-
ness evaluation was performed. Essentially those variables were the sheet thick-
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transfer path as well as scattering of the test boundary conditions. In the 15-
dimensional space 100 variants were generated and evaluated using Latin Hyper-
cube Sampling. 
 

 
Figure 14: Histogram of the Intrusion at Node 1114 

 

 
Figure 15: Measure of Determination of the Relative Displacem

wall Node 1114 
ent of the Front 

 
F
nation (figure 15) turned out to b ereby it could be shown that the 

ariables that were preliminary selected as of no importance indeed had no sig-

ortunately the variation prognosis (figure 14) as well as the measure of determi-
e very stable. Th

v
nificant influence on the result scattering and that the determined statistical meas-
ures are trustworthy. However, still only about 50% of the result variation could 
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be described by linear and quadratic correlation. In order to further investigate the 
cause for the unexplained variation components of the front wall intrusion the sta-
tistic measures of the 100 computations on the FE-structure were investigated us-
ing the post-processor Statistics_on_Structure (Sos) [10]. 

 
Figure 16: Measure of Determination of the Relative Displacement of the Front 

Wall 
 

Figure 17: St ent of the Front Wall 
 

an -
een the crash box in the front wall (figure 17). The comparison of load cases 

 
andard Deviation of the Relative Displacem

The evaluation of the measures of determination (figure 16), standard deviation 
d correlation relationships show the largest scatter in the interconnection be

tw
with minimal (figure 17) and maximal (figure 18) relative displacement at this 
point showed, that the crash box buckles during displacements and one could have 
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reasoned that the low determination of the relative displacement could have been 
associated to this bifurcation problem of the buckling crash box. 
 

 
Figure 18: Design with Minimal Front Wall Intrusion 

 
 

 
Figure 19: Design with Maximal Front Wall Intrusion 

 
Since the buc tical (z) dis-

lacement correlations to that indicator of
kling of the crash box comes along with a strong ver

 the buckling were looked for. However, p
the measure of determination of the vertical displacement only averages out to 
about 50% (figure 20). The remaining 50% of the variation also can not be ex-
plained using quadratic correlation analysis or visual examination for possible 
clustering. 
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ination as Indicator of the Stability Problem  

 
fore it can be assumed that 50% of the buckling crash box is caused by “nu

mer of 
e buckling the input scatter was decreased even further and robustness evalua-

X-Displacement 
Node 1114 

1 
84 scattering 

2 
15 scattering 

3 
2 scattering 

ustness 4 
2 scattering 
parameters 

 
Figure 20: Measure of Determ

There -
ical noise”. For further investigation of the causes of the chaotic activation 

th
tions only concerning the input scatter of the testing boundary conditions velocity 
and impact angle were performed (robustness evaluation 3). Furthermore the input 
scatter of impact velocity and impact angel were reduced by 90% in the fourth 
robustness evaluation, in order to verify if the robustness of the structure is de-
pendent on the amount of the input scattering. Using the Latin Hypercube Sam-
pling 36 variants were created respectively and subsequently computed. 
 
 
Intrusion = relative Robustness Robustness Robustness Rob

parameters parameters parameters very little 
scatter 

Mean Value 42.5 44.5 52 53 
Variation Interval 

Max-Min 
89.5 93.7 63 68 

Coefficient of De-

R

61/23 56/47 43/35 
termination 
2 2/adjustedR

 

 
Table 1: Statistical Measures of the Relative Displacement in the Node 1114 
 

s can be seen in table 1, the variation interval of the relative displacement is only 
ables 

nd a large amount of output scatter remains even when the input of the two vari-

 

A
reduced by 30% even when reducing the input scatter to two scattering vari
a
ables is reduced to 10%. This again leads to the conclusion that either the con-
nected “physical” correlation is relatively independent of the input scatter and 
therefore the structural response is very instable or that numerical problems cause 
the scatter in the response behavior. 
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Regression Model Linear, Quadratic Re-
sponding Measures of Determination  

 

Figure 22: Vi
 

 

 
sualization of the scatter using Moving Least Square Regression 

The visualization of the scatter in figure 21/22 shows, that there is no traceable 
physical correlation above quadratic correlation hypothesis. In the following a

Figure 21: Visualization using Linear 
gression Model as well as the Corre
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“n it 
me step integration was performed. The 10 computations in turn showed about 

Figure 23: An ep Scaling concern-

 
In the fol ed and 
an insufficient meshing of some parts of the crash box supporting structure was 
diagn rash 

umerical” robustness evaluation only concerning the time step of the explic
ti
the variation space of the robustness evaluations 3 and 4. 
 

 
 

thill Plot of the Variation of the Critical Time St
ing the Displacement of the Node 1114 

 

 
 

Figure 24: Comparison of two Computations with differing Time Steps 

lowing further analysis for identifying the problem were perform

osed. This causes “contact locking” of an element cluster during the c
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test simulation while folding this support structure, which is connected to an ran-

uence of 
numerical noise” on result variables. In practical applications it therefore would 

 new systematic approach was developed, for determining the robustness of im-
test computation qualitatively and quan-
 evaluation is the estimation of the scat-

ter of important result variables. Furthermore sensitive scattering input variables 

 computations can 
e given. 

nd the corresponding measures of determination as well as by projec-
on of statistical measures on the finite element structure. 

sciplinary optimization 
sks [11] the measures of determination should also be secured for result values. 

dom impulse, which leads to buckling of the crash box in a random way. 
 
Thereby this benchmark example could demonstrate within different sub spaces of 
the robustness problem in exemplary manner that robustness evaluations can pro-
vide reliable statistical measures for the quantitative estimation of the infl
“
be advisable after the first robustness evaluation with small measures of determi-
nation searching for the cause of numerical problems by comparing single compu-
tation runs and using projection of statistical measures on the FE-structure. 
 

6 Outlook and Conclusion 

A
portant performance parameters of crash 
titatively. Primary result of the robustness

can be identified as well as the determination of result variables can be examined. 
Assumptions concerning activated nonlinear correlations (cluster-
ing/outliers/bifurcation) caused by input scatter can be verified. 
 
Using measures of determination the quantitative influence of numerical noise on 
the variation of result variables can be estimated and thereby an important contri-
bution to the reliability of prognosis and quality of the crash test
b
 
The breakthrough in practical application and the acceptance of stochastic analy-
sis for robustness evaluations was achieved by supplying linear and quadratic cor-
relations a
ti
 
The quantitative estimation of the measures of determination and the securing of 
large measures of determination are not only meaningful in robustness evaluations 
of final designs. If crash test are integral part of multi-di
ta
Here measures of determination in the design space of optimization can be used as 
quality criteria for the applicability of results in constraints or objective functions 
[12].   
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