
MINERIT & GEOMECANICĂ 

 

 
B U L E T I N  R e s u r s e  M i n e r a l e  N r . 2 / 2 0 0 6  1 

 

 

USING SENSITIVITY ANALYSIS AND OPTIMIZATION FOR CIVIL 
ENGINEERING AND GEOTECHNICAL APPLICATIONS  

R. Schlegel, Dr., J. Will, Dr. 
Dynardo GmbH, Weimar, Germany 

H. Konietzky, Prof. Dr.-Ing. habil  
Institut für Geotechnik, Technische Universität Bergakademie Freiberg, Germany  

Abstract: To achieve the demands for safe and economic designs in mining and civil engineering mathematical 
based optimization is necessary. Based on stochastic sampling methods sensitivity analyses are used to identify 
the critical parameters of the system. Later on, evolutionary Pareto-optimization is used to get the best design. The 
underlying physical problem is modeled via numerical approaches. Based on a simple example - the roof support 
of a drift by anchors - the whole procedure and potential are demonstrated. 

  

1 INTRODUCTION 

Recent developments in software, both (I) numerical 
tools for mechanical or coupled hydro-thermal-
mechanical problems in geomechanics as well as (II) 
sensitivity and optimization software, and the increase 
in computational speed even in the PC range, allows 
the combination of both methodologies. Therefore, 
mathematical based sensitivity analysis and 
optimization will replace the classical approach of 
simple parameter studies.  
As in many other industries, the international 
competition demands cost-effective (economic), 
ecological, safe and robust products and designs. For 
the mining industry, this means that additional effort is 
necessary to optimize the mine design and to minimize 
the necessary security reserves. This article 
documents up-to-date strategies to reach this aim. 
Based on a simple mine anchor design, some of the 
procedures are illustrated. 
Computer-based optimization, robustness analysis, 
sensitivity analysis and stochastic approaches need 
the coupling between two components: a tool to 
perform the geomechanical calculations and a tool, 
who manages the individual runs in terms of the 
definition of input parameters including the 
corresponding evaluation. Figure 1 illustrates, who 
such a combination in form of a master-slave-relation. 
The optimization tool (e.g. optiSLang) acts as the 
master and the numerical code (e.g. FLAC) as the 
slave.  

 

Figure 1 Work flow of optimization tool and numerical solver in form 
of a master-slave-relation 

First, the geomechanical problem is transferred from a 
conceptual model into a numerical model. Relevant 
input parameters are parsed, so that the optimization 
tool has access to them. 
Also, within the numerical code response functions are 
programmed, which deliver values to the master, who 
defines the next input parameter set. This loop will 
passed through until reliable results are obtained. 
FLAC is a 2-dimensional numerical explicit Finite-
Difference Code (FLAC, 2006), which was developed 
to solve mechanical and hydro-thermal-mechanical 
coupled problems in geotechnical engineering and 
mining. The code allows to simulate support 
measures, like anchors, props, struts, shotcrete, 
geotextiles, etc.  
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The applied constitutive relations can be arbitrary non-
linear. FLAC is used to perform deformation and 
stability analysis and to investigate the interaction 
between the rock mass and the geotechnical 
construction including support measures.  
optiSLang – the Optimizing Structural Language – is a 
software platform for sensitivity analysis, multi-criteria 
and multi-disciplinary optimization, robustness 
evaluation, and reliability analysis (optiSLang, 2006). 
Sensitivity studies serve to determine the influence of 
the different optimization (input) variables on the 
response variables.  
In optiSLang, a set of design realizations are 
calculated by means of the Design-of-Experiment 
method or Latin Hypercube Sampling strategies, 
respectively. Based on these samples, the correlations 
and variations are evaluated by means of statistical 
post-processing. The obtained correlations show 
which input parameter influences which response 
parameter, while the variations define how strongly the 
response variables are influenced. This can give 
valuable hints on profitable parameter sets for a 
subsequent optimization, as well as on promising 
objective functions. Additionally, from the sensitivity 
study it can be deduced whether the response 
variables can be influenced in the chosen parameter 
space, and if yes, to what extend. For parameter 
optimization gradient based methods, genetic 
algorithms and evolutionary algorithms, adaptive 
response surface methods, as well as Pareto 
optimization methods can be employed. From the 
point of view of optimal component dimensioning, it is 
of special importance to take into account the 
unavoidable random scatters in an appropriate way. 
To this end, methods of robustness evaluation as well 
as reliability analysis are available. Robustness 
evaluations serve to investigate the sensitivity of 
design response variables towards scattering of the 
input variables. With statistical measurements the 
sensitivity of the response variables towards relatively 
frequent scatters is investigated. Thus, robustness 
evaluations ensure operability and reliability for 
relatively frequent events, i.e. events with a probability 
of occurrence of at least about 1%. In cases where 
operability and reliability is to be ensured for much 
less frequent events (one out of a million), methods of 
reliability analysis have to be employed. All these 
methods can help the engineer to develop safe 
designs of high quality. 

2 THE PRINCIPLES OF SENSITIVITY 
ANALYSIS AND OPTIMIZATION 

2.1 Sensitivity analysis 

The aim of a sensitivity analysis is the investigation of 
the sensitivity of varying input variables on the 
variability of system responses using parametric 
studies. Parameter studies, in case of the variation of 
single parameters, belong to the everyday life of an 

engineer for a long time. In analogy thereto design of 
experiment methods, which systematically calculate 
single parameters and combinations of parameters, 
can be used in small parameter spaces. If the 
dimension or the nonlinearly of the parameter space 
increases, stochastic sampling strategies are to be 
favoured for creating supporting point sets. A further 
advantage of stochastic sampling strategies compared 
to design of experiments is, that they furthermore 
permit a statistical evaluation of sensitivities via 
correlation hypothesis (which optimization variables 
operate on which result variable and how) a variation 
analysis (estimate the possible variations of the result 
to align in the chosen design space).  
The variation of the input variables can be described 
by lower and upper bounds or a set of discrete 
realizations. The generated set of design realizations 
is analyzed and evaluated by statistical measurements 
of variation and correlation. The variation in the 
system responses and their correlation to the input 
parameters as well as the significance of the input 
parameter are investigated by statistical methods.  

2.1.1 Statistical Assessment 

The samples are investigated with respect to their 
correlation and variation properties using statistical 
methods. The variation of response values are 
investigated in histograms. The range from minimum 
and maximum values approximate the potential of 
minimizing or maximizing. 
In addition to the variation of response values the 
analysis of the correlation structure allows to establish 
important relations between input and output 
variables. It is convenient to plot coefficients of linear 
and quadratic correlation between input and response 
variables in terms of a coefficient matrix. This allows 
the detection of possible linear or quadratic 
dependencies between the variables. The coefficients 
of correlation are a normalized (between –1 and 1) 
measure of the dependence between two variables.  
While the pair wise correlation coefficients identifies 
the explicit relation between the random variations of 
two variables, e.g. one input variable and one 
response variable, the Principal Component Analysis 
(PCA) describes higher-dimensional relations, which 
reveal correlations of groups of random variables 
among each other. 
Therefore, the correlation analysis enables the 
investigation of causal connections between input and 
output variables, so that ideally the set of significant 
input variables responsible for the variation of an 
output quantity can be identified. 
An other important statistical measurement is the 
coefficient of determination. In Figure 2 for example 
the measure of determination shows, that 95% of the 
variation of the maximum force results from linear 
correlation and the “most sensitive” input variables are 
the yield stress as well as the thickness of two sheet 
blanks (Part 1007 and 1009). Consequently the sub 
space of optimization of this result variable can be 
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reduced to these four sensitive parameters. From the 
histogram one can read off, that the resulting variables 
in the design space varies at least between 69.515 N 
and 85.756 N. For description of further statistical 
measures (Will & Bucher, 2006) shall be referred. 

 

 

Figure 2 Measures of determination and histogram of a single result 
variable 

Consequently, sensitivity studies enable a reduction of 
the parameter space for subsequent optimization 
problems. Also, the previous knowledge obtained from 
the sensitivity studies about properties of the design 
space is very helpful for an adequate formulation of 
constraints and objective functions. From the 
computation of the sensitivity studies adequate 
starting points for gradient optimization, adequate 
starting approximation spaces for adaptive response 
surface methods or input information for starting 
generations of evolutionary search strategies can be 
obtained. 

2.2 Optimization methods 

Basically at least three categories of algorithms are 
available for solving an optimization problem: 

mathematical methods of optimization using gradients 
(gradient methods), response surface methods (RSM) 
and stochastic search strategies. 
Mathematical optimization methods (Schittkowski et 
al.), which determine the search direction using 
gradient information, offer the best convergence 
behaviour of the above mentioned methods. But they 
also have the greatest requirements on the 
mathematical composition of the numerical problem 
formulation, on continuity, differentiability, 
smoothness, scalability as well as the accuracy of the 
gradient determination.  
Most critical from the practical point of view is the 
unavailability of analytical or semi-analytical gradients 
adverse important result variables to estimate and the 
impracticality of numerical gradients for example when 
dealing with noise afflicted problems, non 
differentiable problems or problems of accuracy when 
determining numerical gradients, respectively. 
Successful practical application is consequentially 
concentrated on optimization problems with continues 
optimization variables with mathematically adequate 
problem formulations where suited gradients can be 
calculated.  
If the amount of optimization variables is limited to a 
few variables (5 to 15), response surface methods 
(Meyers & Montogmery, 1995) offer attractive 
possibilities of optimization. This method creates an 
approximation of the design space using an 
approximation function on a suitable set of support 
points (samples of the variable space). The support 
points should be determined using optimal support 
point pattern (Design of Experiments – DOE) for the 
approximation function. The approximation function 
usually has smooth mathematical properties. For the 
search for the optimum in the subspace mathematical 
methods of optimization can be used. Weak point of 
the response surface methods is the proof that the 
approximation at points of interest in the design space 
is sufficient and accurate enough for the optimization. 
To secure the approximation quality Adaptation 
Response Surface Schemes are used. Hereby, 
Adaptive Response Surface Methods (ARSM) which 
zoom and scroll the approximation space until the 
optimum converges on the response surface are the 
most successful (Stander & Craig, 2002). The critical 
value from the practical point of view is the number of 
optimization variables. Therefore, response surface 
methods are used in small dimension of the most 
sensitive optimization variables which have been 
determined before using sensitivity studies. Designs 
which have been pre-optimized in such a manner can 
be used as starting points for gradient optimization or 
as input information of evolutionary search strategies. 
If the aforementioned algorithms do not lead to the 
desired goal stochastic search methods, of which the 
evolutionary algorithms with the subdivisions genetic 
algorithms (Goldberg, 1995) and evolutionary 
strategies (Rechenberg, 1994) are the most 
successful, remain for solving the problem. The term 
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stochastic search method is used as “random” events 
leading to the change in design. Important 
differentiating factor between genetic algorithms and 
evolutionary strategies is the method of evolutionary 
development of the optimization variables. Most 
important evolutionary process of the genetic 
algorithms is the random substitution of genes 
(optimization variables) between two parent designs to 
produce a descendant. Most important evolutionary 
process of evolutionary search strategies is mutation 
(random change) of single genes of a parental design 
to produce a descendant. 
Genetic algorithms thereby are especially useful for a 
relatively wide-ranging search in the design space. 
Therefore, they are often used as a “global” search of 
a possible calibration. Evolutionary strategies are 
especially useful if a proper previous knowledge is 
available in the starting generation. Starting with pre-
optimized designs from genetic search strategies or 
ARSM runs evolutionary strategies can be used for 
local optimization for fine-tuning. Depending on the 
settings of the replacement and mutation operators 
hybrids between genetic and evolutionary search 
strategies can be presented and used for combined 
global and local optimization. 
In this paper evolutionary algorithms are used for 
optimization. In single objective optimization an 
optimization task with one objective function and 
arbitrary constraints is formulated. In case of multi-
criteria optimization an optimization task with more 
than one objective, which are conflicting and arbitrary 
constraints are formulated (Pareto-Optimization). By 
definition a design point x is said to be Pareto-Optimal 
if no objective function criterion can be improved 
without worsening at least one other objective 
criterion. The set of all Pareto Optimal solutions is the 
so called Pareto-Front or Functional Efficient 
Boundary (see Figure 3).  

 

Figure 3 Pareto Front of two objectives f1 and f2 

It should be mentioned that only in case of conflicting 
objectives a Pareto front of compromise solutions exist 
and Pareto optimization is recommended. Because 
Pareto optimization significantly increases the effort to 
obtain the Pareto front (compared with the effort to 
obtain one optimum) the user should have a good 
understanding of conflicting objectives before starting 
a Pareto optimization to resolve that conflict. If multiple 

objectives are not in significant conflict, single 
objective optimization is recommended, if for example 
two objectives f1 and f2 are not conflicting, then they 
depend on each other, which means that the single 
minimization of only one objective automatically 
implies the minimization of the other objective.  

3 EXAMPLE: OPTIMIZATION OF AN 
ANCHOR SCHEME 

3.1 Task 

To demonstrate the general procedure of a combined 
sensitivity and optimization analysis, a simple, but 
typical mining application was used: the roof support 
of a drift by anchors.  
How the intended support behaves depends on 
several parameters like type of anchor, distance 
between anchors, length of anchors, material 
parameters of anchor, constitutive behaviour of rock 
mass, depth below surface, geometry of opening, 
geological conditions, characteristics of grout etc. All 
these and other parameters have a more or less 
significant influence on the system behaviour. For the 
further steps (optimization, robustness assessment, 
safety analysis …) it is essential to know the 
importance of these parameters on the system 
behaviour. The sensitivity analysis answers this 
question. The most important (critical) impact 
parameters will be detected and less important or 
unimportant parameters can be excluded from further 
studies.  
Based on this sensitivity analysis an optimization 
analysis follows. To perform an optimization evaluation 
criteria objectives for the optimization have to be 
defined. If one single objective with multiple criterions 
is defined, the single objective optimization ends with 
one result (optimum). However, in some cases two or 
more criteria exist, which are contradictory and 
therefore no single optimum, but a set of PARETO 
optimal solutions exist. The below given simple 
example uses the maximum roof displacement (safety 
criterion) and the minimum total anchor length 
(economic criterion) as optimization criteria. 
To demonstrate the whole procedure a simple 2-
dimensional numerical model as shown in Figure 2 
was used. The model represents half of a chamber 10 
m wide and 5 m high. Due to the symmetry conditions 
a half-space model was used. The model has a 
vertical symmetry line at the left boundary and 
contains 5 roof anchors. The rock mass was modeled 
using the classical elasto-plastic Mohr-Coulomb model 
with tension cut-off and non-associated flow rule. The 
virgin principal stress state is characterized by 10 MPa 
vertical stress and 5 MPa horizontal stress. The outer 
model boundaries are fixed in the normal direction. 
Parameters are given in Table 1. 
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Figure 2 Model set-up: numerical mesh with installed rockbolts 

Table 1 Basic parameter set for rock mass, anchor and grout 

Parameter Description Unit Value 

Rock mass 

E Young’s-modulus Pa 109 

 Poisson’s ratio  0,3 

 Friction angle ° 30 

 Dilation angle ° 10 

c Cohesion Pa 105 
ft Uniaxial tensile strength Pa 0 

 Density kg/m³ 2500 

Anchor 

length_anker1-5 Anchor length 1 – 5 m 5 
dxdirec Distance between 

anchors 
m 1 

e_anker Young’s modulus of 
anchor steel 

Pa 1010 

yield_anker Yield point of anchor 
steel 

Pa 107 

radius_anker Anchor radius m 0,01 

Interaction between anchors and rock mass (FLAC, 2006) 

cs_ncoh /_scoh Cohesion normal / shear Pa 105 / 105 
cs_sfric Friction angle ° 10 
cs_nstiff /_sstiff Grout stiffness normal / 

shear 
Pa 107 / 107 

grout_thick Grout thickness M 0,01 

3.2 Sensitivity analysis 

First of all, a sensitivity analysis was performed to 
investigate the impact of the individual parameters on 
the roof subsidence. The most important parameters 
according to Table 2 were used. A stochastic sampling 
method, the Latin Hypercube sampling, was used to 
define the input parameter sets. Only 50 model runs 
were necessary to derive the linear and quadratic 
correlation coefficients and coefficients of 
determinations, respectively.  
Exemplary, the Anthill-Plot for the anchor length 
versus the obtained maximum roof settlement is 
shown in Figure 6. 

Table 2 Input parameters with lower and upper bounds for sensitivity 
analysis 

Name Description Unit 
Lower 
Bound 

Upper 
Bound 

length_anker length of anchor M 1,0 5,0 
radius_anker radius of anchor M 0,01 0,1 
e_anker E-Modul of anchor Pa 1010 2,0 *1011 
cs_ncoh grout normal Pa 105 5,0 *106 

cohesion 
cs_scoh grout shear 

cohesion 
Pa 105 5,0 *106 

cs_sfric friction angle ° 10 60 
cs_sstiff grout shear 

stiffness 
Pa 107 108 

cs_nstiff grout normal 
stiffness 

Pa 107 108 

yield_anker yield stress of 
anchor material 

Pa 108 109 

grout_thick grout thickness m 0,01 0,1 

 

The example is based on the simplified assumption, 
that all anchors have the same length and that the 
distance between the anchors is fixed. The plot of the 
coefficient of determination of the maximum roof 
settlement (Figure 5) shows, that 60% of the roof 
settlements can be explained by the anchor length 
alone. All other input parameters have less than 40% 
influence. As expected the maximum roof subsidence 
decrease with increasing anchor length. 

 

 
 
Figure 5 Quadratic correlation coefficients and coefficients of 
determination 
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Figure 6 Anthill-plot: anchor length (m) versus output (maximum roof 
settlement; m) 

Based on the knowledge, that the anchor length plays 
a dominate role, a second sensitivity analysis was 
performed, there both, the parameters for the rock 
mass as well as the parameters for the interaction 
between the rock mass and the anchors were fixed. 
Instead of fixed anchor locations, now the anchors are 
allowed to move along the roof and the anchor length 
can be different for each anchor within the values of 1 
to 5 m, Table 3. 

Table 3 Input parameters with lower and upper bounds for sensitivity 
analysis 

Name Description Unit Lower 
Bound 

Upper 
Bound 

length1 length of anchor 1 m 1,0 5,0 
length2 length of anchor 2 m 1,0 5,0 
length3 length of anchor 3 m 1,0 5,0 
length4 length of anchor 4 m 1,0 5,0 
length5 length of anchor 5 m 1,0 5,0 
dxdirec1 distance between 

symmetry axis and 
anchor 1 

m 0,25 2,5 

dxdirec2 distance between 
anchor 1 and 2 

m 0,5 2,5 

dxdirec3 distance between 
anchor 2 and 3 

m 0,5 2,5 

dxdirec4 distance between 
anchor 3 and 4 

m 0,5 2,5 

dxdirec5 distance between 
anchor 4 and 5 

m 0,5 2,5 

This sensitivity analysis shows that the anchors 1 and 
2 have by far the strongest influence on the roof 
subsidence. The length of the anchor 5 (nearest to the 
side wall) shows no correlation to the maximum roof 
subsidence, Figures 7 and 8. 

3.3 Optimization 

 

Based on the results of the sensitivity analysis, an 
optimization based on evolutionary algorithms was 
performed.  
A quite interesting approach is the Pareto-
Optimization, where several contradictory objective 
functions are defined.  

 

Figure 3: Numerical model set-up 

 

 

Figure 4 Quadratic correlation coefficients and coefficients of 
determination 
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Besides the technical (safety) objective f1 (= maximum 
allowable roof settlement) a second economic 
objective f2 (= minimum of total anchor length) was 
defined: 

first objective  

min subsidence roof maximumf1   

second objective:   

minlf

5

1i

i2 


 

with the constraint:   

m5,4dxdirec

5

1i

i 


 

1000 runs were performed.  
 
The Pareto-Optimization automatically results in the 
maximum anchor length (5 x 5m) at the left upper 
corner and minimum anchor length (5 x 1m) at the 
right lower corner of the Pareto-front (see Figure 9). 
The best design gives an accumulated anchor length 
of 11 m for 2.5 cm roof subsidence (see Figure 10).  

 

Figure 9 Roof settlement [m] versus accumulated anchor length [m] 

Along the Pareto-front all other optimum designs can 
be obtained.  
The minimum roof subsidence is reached with the 
anchor lengths l1-5 = 5 m and the respective minima for 
the anchor distances. 

 

Figure 10 Parameters for best design 

The interesting point is, that both anchor length and 
location are strongly inhomogeneous for the optimum 
designs. This is caused by the inhomogeneous 
secondary stress field, the non-linearities of rock 
behaviour (plastifications) and the interaction between 
rock mass and anchors.  

4 CONCLUSIONS 

Numerical simulation tools as well as optimization and 
sensitivity analysis tools are developed and validated 
to a stage, that the can be used in geotechnical 
engineering.  
Also, the computational speed allows to perform such 
a combined analysis at least for some of the problems. 
Sensitivity analysis using the Latin hypercube 
sampling results in time-effective solution schemes, 
which need app. 50 to a few 100 runs only for even 
complex problems with more than 10 input variables. 
The evolutionary based Pareto-optimization is a 
valuable tool to combine safety and economic 
requirements to get an optimum design. Especially for 
the optimum design of support measures (anchors, 
nails, shotcrete, geotextiles etc.) this strategy offers a 
great perspective. 
Due to the demand to optimize processes in mining 
and civil engineering, mathematical based optimization 
is a valuable tool with no real alternative.  
The practical application of such strategies needs 
more specific definitions of constraints, e.g. restriction 
of a few discrete anchor lengths or anchors distances 
to allow the direct transfer into the engineering 
practice.  
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A group at the Department of Geotechnics at the 
Technical University of Freiberg (Germany) has 
started to work on such practical tasks for the mining 
industry. 
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