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Abstract

In real case applications within the virtual prototyping process, it is not always
possible to reduce the complexity of the physical models and to obtain numerical
models which can be solved quickly. Usually, every single numerical simulation
takes hours or even days. Although the progresses in numerical methods and high
performance computing, in such cases, it is not possible to explore various model
configurations, hence efficient surrogate models are required.

The paper gives an overview about advanced methods of meta-modeling. In ad-
dition, some new aspects are introduced to impove the accuracy and predictability of
surrogate models, commonly used in numerical models for automotive applications.
Whereby, the main topic is reducing the neccessary number of design evaluations,
e.g. finite element analysis within global variance-based sensitivity and robustness
studies. In addition, the similar approach can be used to perform optimization and
stochastic analysis and to create synthetic meta-models for experimental data.
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1 Introduction

1.1 Meta-modeling

Meta-modeling is one of the most popular strategy for design exploration within nonlinear
optimization (see e.g. Booker et al. (1999); Giunta and Watson (1998); Simpson et al.
(2003)) and stochastic analysis (see e.g. Choi et al. (2001); Youn et al. (2004); Yang
and Gu (2004); Rais-Rohani and Singh (2004)). Moreover, the engineer has to calculate
the general trend of physical phenomena or would like to re-use design experience on
different projects. Due to the inherent complexity of many engineering problems it is quite
alluring to approximate the problem and to solve other design configurations in a smooth
sub-domain by applying a surrogate model (Sacks et al. (1989); Simpson et al. (2001)).
Starting from a reduced number of simulations, a surrogate model of the original physical
problem can be used to perform various possible design configurations without computing
any further analyses. So, the engineer may apply a classical design of experiment or
stochastic sampling methods for more than n = 10...15 input parameters to calculate the
simulations.

For a global variance-based sensitivity analysis it is recommended to scan the design
space with latin hypercube sampling and to estimate the sensitivity with the multivariate
statistic based on surrogate models. Results of a global sensitivity study are the global
sensitivities of the optimization or random variables due to important responses. So, it is
possible to identify the sub domains for optimization and reliability analysis.

1.2 Latin hypercube sampling

In order to obtain meaningful correlations between the input and output variables it is
essential to precisely capture the input correlations in the simulated values. Monte Carlo-
based methods use digital generation of pseudo-random numbers to produce artificial
sample values for the input variables. Typically, plain Monte Carlo methods are fairly
well able to represent individual statistics of the random variables. At small sample
sizes N , however, the prescribed correlation structure may be rather heavily distorted.
Unfortunately, solving of many real–world engineering problems is very expensive so that
only a small number of samples can be accepted.

Significant improvement can be made by utilizing the latin hypercube sampling method
(see Florian (1992)). Latin hypercube sampling is an advanced Monte Carlo simulation
and a further development of the stratified sampling methodology. In order to reduce the
necessary number of samples, each class of any random variable is considered in the same
manner (McKay et al. (1979)). First, the marginal distribution or cumulative distribution
function Xi is subdivided into N classes Dj with the same probability

P [xi ∈ Dj] =
1

N
, i = 1, ..., n, j = 1, ..., N

So Nn hypercubes are created with the probability N−n. Comparing plain Monte Carlo
with latin hypercube sampling it is easily seen that latin hypercube sampling covers the
space of random variables in a significantly superior way. In particular, plain Monte Carlo
methods introduce unwanted correlation into the samples which becomes very pronounced
if the number of samples is small.
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Figure 1: Original model response func-
tion z(x, y).

Figure 2: Polynomial least square approx-
imation of a given set of support points.
Quadratic approximation function ẑ(x, y)
using quadratic regression.

1.3 Surrogate models

1.3.1 Polynomial least square approximation

These well-distributed results can be used to create the meta-models. To simulate complex
real world systems the response surface methodology is becoming very popular and is
widely applied in many scientific areas. In general, response surface methodology is
a statistical method for constructing smooth approximations to functions in a multi-
dimensional space. In design studies, e.g. design optimization or reliability analysis, a
response surface is generated with appropriate approximation functions on a suitable set
of discrete support points distributed throughout the design space of interest.

A commonly used approximation method of model responses, objectives, constraints
and state functions

y(x) 7→ ŷ(x)

is the regression analysis. Usually, the approximation function is a first or second order
polynomial (Box and Draper (1987); Myers (1971); Myers and Montgomery (1995)) as
shown in Figure 2. As an example in the (n = 2)-dimensional case, k-responses (k =
0, ..., N) will be approximated using a least square quadratic polynomial in the following
form:

yk = β0 + β1x1k + β2x2k + β11x
2
1k + β22x

2
2k + 2β12x1kx2k + εk (1)

Herein the term εk represents the approximation errors. Equation (1) can be written in
matrix notation to

y = Xβ + ε (2)

Weimar Optimization and Stochastic Days 4.0 – November 28–29, 2007

3



with

y =


y1

y2
...
ym

 ; ε =


ε1

ε2
...
εm

 ; β =


β0

β1

β2

β11

β22

2β12


and

X =


1 x11 x21 x2

11 x2
21 x11x21

1 x12 x22 x2
12 x2

22 x12x22
...

...
...

...
...

...
1 x1N x2N x2

1N x2
2N x1Nx2N


The approximate coefficients β̂ can be calculated using the least square postulate

S =
m∑

k=1

ε2
k = εT ε → min

In due consideration of (2), the least square error S is

S(β̂) = (y −Xβ̂)T (y −Xβ̂) → min (3)

An expansion of the right hand side of (3) yields

S(β̂) = yTy − (Xβ̂)Ty − yTXβ̂ + (Xβ̂)TXβ̂

= yTy − β̂
T
XTy − yTXβ̂ + β̂

T
XTXβ̂

= yTy − 2β̂
T
XTy + β̂

T
XTXβ̂ → min

The least square error S may be a minimum in case that the partial gradients

∂S(β̂)

∂β̂
= −2XTy + 2(XTX)β̂ = 0 (4)

are zero. Using equation (4), the coefficients β̂ are given with the linear equation system

(XTX)β̂ = XTy

In case that XTX is non-singular, the coefficients β̂ are given by

β̂ = (XTX)−1XTy

So, the predicted response values are known as

ŷ = Xβ̂

Of course the accuracy of the approximation compared to the real problem has to be
checked and verified. For reasonably smooth problems, the accuracy of response surface
approximations improves as the number of points increases. However, this effect decreases
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with the degree of oversampling. An attractive advantage of the response surface method-
ology is the smoothing by approximating the subproblem. Especially for noisy problems
like crash analysis, for which the catch of global trends is more important and the local
noise may not be meaningful, a smoothing of the problem may be advantageous.

However, the recommended area of application is restricted to reasonably smooth
problems with a small number of input variables, because linear and quadratic functions
are possibly weak approximations near and far from certain support points. And using
polynomials higher than second order may only result in higher local accuracy with many
sub-optima. Because of that in the last years, different advanced surrogate models have
been developed to impove the accuracy and predictability of surrogate models.

1.3.2 Stepwise response surfaces

Within the stepwise response surface approach the response surface is determined by
backward stepwise regression (Madsen et al. (1986)), so that the square and cross terms
can be absorbed into the model automatically according to their actual contribution,
which is calculated by repeated variance analysis. The quadratic backward stepwise re-
gression begins with a model that includes all constant, linear and quadratic terms of the
least square polynomial approximation (1). By deleting trivial regressors one at a time
this approach develops a stepwise final regression model which only contains regression
coefficients which have large effects on the responses. This method is often applied for
multiobjective optimization of vehicles. e.g. in Gu et al. (2001); Yu et al. (2002); Liao
et al. (2007). Therewith the number n of linear and quadratic terms of the regression
model (8) can be dramatically reduced.

1.3.3 Shepard interpolation

A well known method that among all scattered data for an arbitraty number of variables
is the Shepard (1968) method. Shepard’s method and its generalization (e.g. Du (1996))
is a statistical interpolation averaging the known values of the original function which
exactly interpolates the values of the data. The most relevant drawback of this method is
that the interpolated values are always constrainted between the maximum and minimum
values of the data set.

1.3.4 Kriging models

Kriging was originally developed to model spatial variations in measured geological models
(Matheron (1963)). These models are inherently random, and in most cases the variation
about a constant mean value is gaussian. Furthermore, the use of Kriging models is also
becoming popularity for approximating optimization and stochastic problems (Martin
and Simpson (2003)). Kriging is an accurate surrogate model for this type of application
due to its flexibility to approximate many different and complex response functions. In
addition, it is also suitable for deterministic models since it interpolates the support data
points and provide a confidence interval about a prediction result of the approximation
model. The flexibility of this method is a result of using a set of parameters to define
the model but the process of selecting the best set of parameters for a Kriging model
has a few drawbacks. These parameters must be found via a constrained iterative search,
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linear regression with correlation coefficient = 0.964
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Linear regression

Figure 3: Given set of samples of input
parameter xi = x and response xj = y,
linear regression function with correlation
coefficient of ρij = 0.964.

       quadratic regression with correlation coefficient = 0.620
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Figure 4: Given set of samples of input
parameter xi = x and response xj = y,
quadratic regression function with correla-
tion coefficient of ρij = 0.62.

a computationally expensive process with respect of the assumption gaussian random
process (Jones et al. (1998)).

2 Multivariate Statistic

2.1 Analysis of Correlation

Various statistical analysis procedures are available for the subsequent evaluation of corre-
lation of input parameters and the responses. For example, the coefficients of correlation
are calculated from all pairwise combinations of both input variables and response ac-
cording to:

ρij =
1

N − 1

N∑
k=1

(
x

(k)
i − µxi

)(
x

(k)
j − µxj

)
σxi
σxj

(5)

The quantity ρij, called the linear correlation coefficient, measures the strength and the
direction of a linear relationship between two variables, as shown in Figure 3. The linear
correlation coefficient is sometimes referred to as the Pearson product moment correlation
coefficient. The quadratic coefficients of correlation

ρij =
1

N − 1

N∑
k=1

(
ŷ(k)(xi)− µŷ(xi)

) (
x

(k)
j − µxj

)
σŷ(xi)σxj

is defined as the linear coefficient of correlation (see Equation (5)) between the least-
squares fit of a quadratic regression ŷ(xi) of the variable xj and xj themselves on the

samples x
(k)
i , x

(k)
j , as shown in Figure 4. A correlation greater than 0.7 is generally de-

scribed as strong, whereas a correlation less than 0.3 is generally described as weak. These
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values can vary based upon the type of data being examined. All pairwise combinations
(i, j), values can be assembled into a correlation matrix CXX , as shown in Figure 8.

2.2 Analysis of Prediction

The coefficient of determination

R2
j =

1

N − 1

N∑
k=1

(
ŷ(k)(xi)− µŷ(xi)

) (
x

(k)
j − µxj

)
σŷ(xi)σxj

with i = 1, ..., n is a value which indicates the shaking (variance or fluctuation) of responses
j of the approximation model, depending on the regression model terms. It is a measure
thats allow to predict the dependence of a response value from a set of input parameter
i = 1, ..., n in a special regression model context. This R2 value varies between 0 and 1.
The coefficient of determination represents the percent of the data that is the closest to
the regression model best fit. For example, R2 = 0.868 based on a linear regression, which
means that 86.8% of the total variation in the response value y can be explained by the
linear relationship between the regression model containing input parameter. However, a
high value of R2 not allways implies a good regression model, because adding of additional
approximation model terms increase the coefficient.

Adjusted coefficient of determination This inadequacy leads to the adjusted R2

coefficient

R2
adj = 1− N − 1

N − p

(
1−R2

)
who not increase with the number of model terms for a small sample size N . Whereat N
is the number of sample points and p the number of regression coefficients. In fact the
coefficient decreases with unnecessary model terms. With the comparison of R2 and R2

adj

it is possible to predict the regression model. A high difference between the coefficients
indicates that unnecessary terms are included in the model.

Coefficients of importance An important prediction value to explain the influence of
a single input parameter l on a chosen output parameter j, depending on the regression
model is the coefficients of importance

COIjl = R2
j −

1

N − 1

N∑
k=1

(
ŷ(k)(xi)− µŷ(xi)

) (
x

(k)
j − µxj

)
σŷ(xi)σxj

which an regression model ŷ (xi|i ∈ {1, ..., n} ∧ i /∈ {l}). In addition the adjusted coeffi-
cients of importance is given by

COIadj
jl = 1− N − 1

N − p
(1− COIjl)
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Figure 5: Confidence Interval for
coefficient of correlation ρ.

Figure 6: 95% Confidence intervals to estimate a
coefficient of correlation of ρ = 0.5 using LHS.

Figure 7: Costs of the robustness evaluation depending on the sampling method, the
number of input and oputput parameters ni, no and the regression model to estimate the
prediction values. A commonly used maximal sample number is N = 150. So, in case of a
full polynomial regression model the number of input parameters is restricted to n < 16.
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2.3 Costs of the robustness evaluation

2.3.1 Minimal sample size

In order to obtain stable statistics for large linear correlation coefficients only, there is a
relation between the number of design variables n = ni, the number of responses no and
the necessary number of samples. The simulation procedure will produce N samples for
all parameter xi denoted by xk

i ; i = 1 . . . n; k = 1 . . . N . In general it is recommended
that the number of samples N be at least equal, but better higher than the number n of
design variables.

The recommended minimum number of samples depends on the number of input and
oputput parameters and is given by N = (ni + no)

2 for plain Monte Carlo sampling and
N = 2(ni +no) for latin hypercube sampling, as shown in Figure 7. This rough estimation
may be sufficiently for a relative small number of input parameters up to n < 40. A more
precise estimation is given as a results of a convergence study of the confidence intervals.

2.3.2 Confidence intervals

Of course, the correlation coefficients are random values themselves. Whereby the variance
depends on the number of the calculated samples N . According to a specified confidence
interval Ip of e.g. 95% the possible lower and upper bounds of the estimated coefficients
of correlation ρij can be evaluated, as shown in Figure 5.

The confidence intervals for the estimated coefficients of correlation ρij in Figure 6 are
computed based on the Fisher’s z-transformation. The interval for a significance level of
α (i.e. a confidence level of 1− α) is given by[

tanh

(
zij −

zc√
N − 3

)
, tanh

(
zij +

zc√
N − 3

)]
In this Equation, N is the number of samples used for the estimation of ρij. The critical
value zc is computed by using the Bonferroni-corrected value for the significance level
α′ = α/k with k being the number of confidence tests. The transformed variable z is
computed from

zij =
1

2
log

1 + ρij

1− ρij

(6)

and the critical value zc is given by

zc = Φ−1(1− α′/2) (7)

where Φ−1(.) is the inverse cumulative Gaussian distribution function.
In order to study the effect of latin hypercube sampling on the reduction of statistical

uncertainty, a comparison of the estimation errors (standard deviations) of the correlation
coefficients is carried out. The most important domain in the range of 2 < n < 200,
coefficient of correlation ρ = 0.5 is detailed shown in Figure 6. For example, for n = 160
input parameters and a tolerated maximum error of 14 percent according to a 95%-
confidence interval the necessary number of samples is N = 200 using latin hypercube
sampling.
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OUTPUT: disp17[1] vs. INPUT: Fx, r = 0.964
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Figure 8: Matrix CXX of the linear correlation coefficients with the possible lower and
upper bounds according to a specified confidence interval Ip of 95%.
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Figure 9: Matrix CXX of the most significance linear correlation coefficients used for
reduced polynomial regression models.
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Figure 10: Histogram of the differences between the user-defined and sampled quadratic
and linear input correlation matrix CXX . Fitted probability density function with the
99%–fractiles of the coefficients of correlation.

2.3.3 Cost of the regression model

The regression models for the coefficient of importance require a minimum number of
samples

N = 1 + n+
n(n+ 1)

2
(8)

depending on the constant, linear and quadratic terms of the regression model. So, in
case of a full polynomial regression model and an acceptable maximal sample number of
N = 150 the number of input parameters is restricted to n < 16.

To eliminate this limitation other surrogate models e.g. reduced polynomial regression
model, moving least square approximation, artificial neural networks and support vector
regression are described in the next sections of this paper.

3 Significance filter and reduced polynomial regres-

sion model

The meta-modeling approaches reported in the literature are usually based on the as-
sumption that a simulation model generates a single, i.e. scalar value response. But
most complex engineering simulations yield to multiple responses. To reduce the required
number of support points a possible approach is to create a separate meta-model for each
response individually.

A significance filter to reduce the number n of relevant input parameters is based on the
differences between the user-defined and sampled quadratic and linear input correlation
matrix CXX . Figure 8 shows the linear correlation matrix as a result of the latin hypercube
sampling approach. In this example the user-defined input correlation matrix is simple the
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unite matrix. So, the histogram of the differences can be calculated, as shown in Figure
10, and can be fitted by a probability density function with the 95% – 99%-fractiles of the
coefficients of correlation. These quantiles are used as a significance filters for the relevant
input parameters with a coefficients of correlation larger than these bounds. Result is a
reduced polynomial regression model of the responses, as shown in Figure 9.

4 Advanced Moving Least Square Approximation

Moving least square (MLS) functions can approximate locally clustered support point
samples with higher local approximation quality. In addition MLS improve the response
surface model using additional support points. MLS is formulated as

ŷ(x) =

nb∑
i=1

hi(x)ai(x) = hT (x) a(x) (9)

with a predefined number of basis terms nb, a vector of basis functions h and the associated
vector of the coefficients a. Lancaster and Salkauskas (1986) formulates a local MLS
approximation as

ŷ(x,xj) =

nb∑
i=1

hi(xj)ai(x) = hT (xj) a(x)

with j = 1, ..., ns support points. The approximate coefficient vector a can be calculated
using the weighted least square postulate

S(x) =
ns∑

j=1

w(x− xj) (ŷ(x,xj)− y(xj))
2

=
ns∑

j=1

w(x− xj)

(
nb∑
i=1

hi(xj)ai(x)− y(xj)

)2

= (Ha− g)TW(x)(Ha− g) → min

(10)

with the weighting function w(x− xj) and

g = [y(x1) y(x2) ... y(xns)]
T

H = [h(x1) h(x2) ... h(xns)]
T

h(xj) = [h1(xj) h2(xj) ... hnb
(xj)]

T

W(x) = diag[w(x− x1) w(x− x2) ... w(x− xns)]

The least square error S(x) may be a minimum in case that the partial gradients are zero.

∂S(x)

∂a
= 0

So using the Equation (10) a linear equation system gives an estimation of the coefficient
vector a

a(x) = M−1(x) B(x) g (11)
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with

M(x) = HT W(x) H

B(x) = HT W(x)

Cause the matrix of the basis function M(x) should be non-singular always a sufficient
number of ns immediate neighbor support points have to be available. The number must
be at least as large as number of the basis terms. The Equation (11) inserted in (9) gives
the approximation function

ŷ(x) = hT (x) M−1(x) B(x) g

An accurate as possible approximation quality requires a weighting function which is
larger than zero w(x − xj) > 0 and monotonically decreasing w(‖x − xj‖) inside of a
small sub space Ωs ⊂ Ω. So the influence of supports far from the actual coordinates
is unimportant. An uniform weighting is given by a symmetry condition w(x − xj) =
w(xj − x) = w(‖x− xj‖). Usually, an exponential function is used in this way:

w(‖x− xj‖) =

 e
−

0@‖x− xj‖
Dα

1A2

‖x− xj‖ ≤ D
0 ‖x− xj‖ > D

(12)

with a constant

α =
1√

− log 0.001

and a influence radius D to choose. It is obvious that the smaller D the better the
response values of the support points fit the given values. But as mentioned above at
least nb support points have to be available in every point to be approximated. Therefore
it is possible that a D has to be chosen which leads to a large shape function error at the
support points - see Figures 11, 12 and 13. To avoid these problems a new regularized
weighting function was introduced by Most and Bucher (2005):

wR(‖x− xj‖) =


ŵR(‖x− xj‖)

ns∑
i=1

ŵR(‖x− xi‖)
‖x− xj‖ ≤ D

0 ‖x− xj‖ > D

, 0 < j ≤ ns (13)

with

ŵR(d) =

((
d

D

)2

+ ε

)−2

− (1 + ε)−2

(ε)−2 − (1 + ε)−2
; ε� 1 (14)

It is recommended by the authors to use the value

ε = 10−5
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Figure 11: MLS approximation with
weighting function (12) and D = 1. For
some support points (−2.5 ≤ x ≤ 0) the
approximation error is very small but for
coordinates where the support points have
larger distances the shape function is not
continuous.
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Figure 12: MLS approximation with
weighting function (12) and D = 2. Now
the interval where the shape function is
continuous is larger but the error for points
with −2.5 ≤ x ≤ 0 increases and for
marginally coordinates where are no sup-
port points the shape function is still not
continuous.
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Figure 13: MLS approximation with
weighting function (12) and D = 3. The
shape function is completely continuous in
the contemplated interval but the shape
function error at the support points is very
large.
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Figure 14: MLS approximation with reg-
ularized weighting function (14) and D =
10.
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Figure 15: MLS approximation with weighting
function (14) and D = 20.
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Figure 16: Cut-out of Fig-
ure 15.
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Figure 17: MLS approximation with weighting
function (14) and D = 30.
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Figure 18: Cut-out of Fig-
ure 17.
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Figure 19: Circles to check the conditions in Equation (15) and the resulting distances.
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Figure 20: Function representing the occurrence of the supports from the Figures 15 and
17 and the belonging function d(x).
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Figure 21: MLS with weighting function (14)
and the described function d(x).
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Figure 22: Cut-out of Fig-
ure 21.
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Equation (13) in combination with Equation (11) can be simplified:

a(x) = M−1(x) B(x) g

= [HT W(x) H]−1HT W(x)

=

 1
ns∑
i=1

ŵR(‖x− xi‖)
HT Ŵ(x) H


−1

1
ns∑
i=1

ŵR(‖x− xi‖)
HT Ŵ(x)

= [HT Ŵ(x) H]−1HT Ŵ(x)

Because of that Equation (14) can be used as weighting function instead of the more
complex expression in Equation (13). It can be seen in Figure 14 this new regularized
weighting function works better than the exponential function. But if the ratio of the
minimal distance among the supports to the extent of areas where are no supports becomes
worse the same problems occur again - see Figures 15, 16 and 17, 18. The regularized
weighting function (14) works very good for this example but if the minimal distance
among the support points gets smaller and the areas where are no support points become
larger there are still some problems.

As a matter of fact a large D is needed to approximate for coordinates where no
support points are around and a small D is needed for coordinates where are a lot of
support points in order to reach a minimal approximation error. To comply with this
conditions it is necessary to use a function d(x) for the influence radius instead of a
constant D. One possibility to get such a function is to properly scale and flip horizontal
a function fosp, which represents the occurrence of the support points:

fosp(x) =
ns∑
i=1

e
−

0@‖x− xi‖
c1

1A2

d(x) = c2 − c3 · fosp(x)

Whereby c1 representing a certain value of the distances among the support points and
the scaling factors c2 and c3. As mentioned several times the distances among the support
points play an important role in order to get a suitable function d(x). They are calculated
as follows. Let S ⊆ Rn be a finite set of support points and Dist(S) ⊆ R the set of
contemplated distances among the support points. It is valid

Dist(S) = { d ε R \ {0} : ∃ xj,xk ε S ( d = ‖xj − xk‖ ∧

∀ xl ε S
(∥∥∥xj + xk

2
− xl

∥∥∥ ≥ d

2

)
) }

(15)

This means that only distances between two nodes xj and xk are regarded if no other node
is closer to their center than themselves. In the 2-dimensional space the contemplated
distances are similar to the Delaunay triangulation - see Figure 19. In higher dimensions
the check of the conditions in Equation (15) is also simply practicable.

Needed values for the scaling factors of the function d(x) are min Dist and max Dist.
To avoid that a little change of the support points cause a great change of these values
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a probability density function fX(x) is fitted to the elements of Dist. The belonging
distribution function is FX(x) and the values of the inverse FX

−1(x) for x = 0.1 and
x = 0.9 are used respectively. With

dmin = FX
−1(0.1), dmax = FX

−1(0.9) and dxmax = FX
−1(0.99)

the scaling factors are adopted as follows

c1 = dxmax, c2 = dmax · 101 and c3 =
(dmax − dmin) · 101

max
x

fosp(x)

Thereby it is factored in that in order to reach a minimal approximation error Most and
Bucher (2005) assumed (

dmin

D

)2

� ε

which is equivalent to

D2 � d2
min · 105 resp. D � dmin · 10

√
5

and leads to the predefinition

d(xi) = dmin · 101, for xi with fosp(xi) = max
x

fosp(x) and

d(xi) = dmax · 101, for xi with fosp(xi) = 0

Another problem within optimization and stochastic analysis could be the fact that the
approximation for marginal coordinates follow the global trend of the given support points.
This may lead to marginal approximation values which differ from the approximation
values of the support points for orders of magnitudes - see Figure 30. Then it could be
useful to add some support points (border points) to force the approximation for marginal
coordinates to averaged values - see Figure 31. Additional support points Sadd ⊆ Rn are
introduced as follows: For given lower and upper bounds of coordinates bl,bu ∈ Rn it is
valid

Sadd = Smarg ∪ Sinn

with

Smarg = { x ∈ Rn : ∀ 0 < i ≤ n ∃ k ∈ N, 0 ≤ k <
biu − bil
c4

( xi = bil + k · c4 ∨ xi = biu )

∧ ∃ 0 < j ≤ n ( xj = bjl ∨ x
j = bju ) }

(16)

with c4 as a value which depends on the maximal distance between the edges of the
regarded space characterized by bl and bu and the support points.

Sinn = { x ∈ Rn : ∃ z ∈ Smarg, s ∈ S(z), k ∈ N+

( x = z + (s− z)(1− 1

2k
) ∧ ‖s− z‖

2k
> c5 ) }

(17)
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Figure 23: Original function Figure 24: Support points

Figure 25: MLS approximation of Fig-
ure 23 with supports of Figure 24,
weighting function (12) and D = 0.6

Figure 26: MLS approximation of Fig-
ure 23 with supports of Figure 24,
weighting function (12) and D = 0.7

Figure 27: MLS approximation of Fig-
ure 23 with supports of Figure 24,
weighting function (12) and D = 0.8

Figure 28: MLS approximation of Fig-
ure 23 with supports of Figure 24,
weighting function (14) and D = 3
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Figure 29: Adding support points with Equations (16) and (17) and c5 ≈ 3.3.

with
S(z) = { s ∈ S : ∀ x ∈ S ( ‖z + s− 2x‖ ≥ ‖z− s‖ ) }

This simply means that a net of support points with marginal coordinates are added
around the given supports (Smarg) and, if it is necessary, originated in this points further
support points which lead to the given (inner) supports are also added (Sinn) - see Figure 29
for n = 2. The conditions for the elements in S(z) are equivalent to the conditions for the
elements in Dist(S) that is s ∈ S(z) → ‖s− z‖ ∈ Dist( S ∪ {z} ).

The values for the additional support points are calculated with the Shepard interpo-
lation. Whereby the weighted interpolation function of the response surface is

ŷ(x) =

n∑
i=1

y(xi)

(
1

‖x− xi‖+ ε

)m

n∑
i=1

(
1

‖x− xi‖+ ε

)m m = 1, ..., 5

The smoothing of the interpolation is numerically controlled by the smoothing exponent
m.
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Figure 30: Figure 21 with visualizing the whole values range
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Figure 31: Example of Figure 21 with additional support points (border points)
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Figure 32: Original function Figure 33: Support points

Figure 34: MLS approximation of Fig-
ure 32 with supports of Figure 33

Figure 35: MLS approximation of Fig-
ure 32 with supports of Figure 33 and ad-
ditional supports (border points) like it is
shown in Figure 29
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yi = +1

yi = −1

〈w,x〉 + b = +1

〈w,x〉 + b = −1

Figure 36: SVM: linear separation by a hyperplane

5 Support Vector Machines

5.1 Classification

A very efficient tool for classification purposes are Support Vector Machines (SVM), which
is a method from the statistical learning theory. This method was firstly proposed by
Vapnik and Chervonenkis (1974) and became popular in the last decade. Fundamental
publications from this period are Cortes and Vapnik (1995), Vapnik (1995) and Schoelkopf
and Smola (2001). The algorithmic principle is to create a hyperplane, which separates
the data into two classes by using the maximum margin principle.

The linear separator is a hyperplane which can be written as

f(x) = 〈w,x〉+ α0 (18)

where w is the parameter vector that defines the normal to the hyperplane and α0 is the
threshold. In Figure 36 a linear separation is shown for a set of points. The two classes
are associated with −1 and +1. The SVM principle is to maximize the distance between
the hyperplane and the two classes. This can be seen in Figure 36. This principle can be
written as an optimization problem

maxw,b mini{‖x− xi‖ : 〈w,x〉+ α0 = 0} (19)

where
mini{‖x− xi‖ : 〈w,x〉+ α0 = 0} (20)

is the minimum distance from the training points to the hyperplane. By assuming that
the minimal distance is equal to one

mini=1..n|〈w,xi〉+ α0| = 1 (21)

we obtain for the margin width

∆ =
2|〈w,xi〉+ α0|

‖w‖
=

2

‖w‖
(22)
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Figure 37: SVM: nonlinear projection into feature space

By introducing Lagrange multipliers αi ≥ 0 we obtain the following unconstraint form of
the problem

w =
n∑

i=1

αiyixi with
n∑

i=1

αiyi = 0 (23)

whereby only the training points for which the Lagrange multipliers are strictly positive
αi > 0, the so-called support vectors, are needed for the function evaluation

w =
s∑

j=1

αjyjxj (24)

with s < n.
For nonlinear separable classes the training data are mapped nonlinearly into a higher-

dimensional feature space and a linear separation is constructed there. This is illustrated
in Figure 37. The transformation ψ(x) which is realized as an inner product

f(x) =
s∑

i=1

αiyi〈ψ(xi), ψ(x)〉+ α0 (25)

can be substituted by a kernel function

K(x,y) = 〈ψ(x), ψ(y)〉 (26)

which leads finally to the expression

f(x) =
s∑

i=1

αiyiK(xi,x) + α0 (27)

where explicit knowledge of the nonlinear mapping is not needed. Often used kernel types
are the Gaussian kernel

K(x,y) = exp

(
−‖x− y‖

2D2

)
(28)

and the polynomial kernel
K(x,y) = (〈x,y〉+ θ)p (29)
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During the training of the support vector machines the Lagrange multiplier of the
training points have to be determined by minimizing the primal objective function ob-
tained from Eq.(19) which reads

Lp(ααα) =
1

2

s∑
i=1

s∑
j=1

yiyjαiαjK(xi,xj)−
∑
i=1

αi (30)

Many algorithms can be found in literature, see Schoelkopf and Smola (2001). We use
one of the fastest methods, the sequential minimal optimization algorithm proposed by
Platt (1998) for this training. In this algorithm the Lagrange multipliers will be updated
pair-wisely be solving the linear constraint conditions.

5.2 Regression

Regression based on Support Vector Machines was introduced by Drucker et al. (1997).
In Smola and Schoelkopf (1998) and Smola and Schoelkopf (2004) a detailed introduction
is published. In the SVR approach an error tolerance function

Lε(y) =

{
0 |f(x)− y| < ε

|f(x)− y| − ε |f(x)− y| ≥ ε
(31)

which is called ε-insensitive loss function is defined. The optimization task is defined as

minimize
1

n

n∑
i=1

|f(xi,w)− yi|ε + ‖w‖2. (32)

The output of the Support Vector Regression reads

f(x) =
n∑

i=1

(α∗i − αi)K(xi,x) + α0 (33)

where α∗i and αi are the Lagrange multipliers. The primal form of the objective function
reads

Lp(ααα
∗,ααα) =ε

n∑
i=1

(α∗i + αi)−
n∑

i=1

yi(α
∗
i − αi)

+
1

2

n∑
i=1

n∑
j=1

(α∗i − αi)(α
∗
j − αj)K(xi,xj)

(34)

subjected to the constraints

n∑
i=1

(α∗i − αi) = 0, 0 ≤ α∗i , αi. (35)

Again we use the sequential minimal optimization algorithm for the determination of the
Lagrange multipliers.

For deterministic data point values the error tolerance ε is chosen very small to repre-
sent these values with high accuracy. The kernel radius is taken as the maximum possible
value by fulfilling the specified error tolerance. If noisy data should be approximated a
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very small ε would lead to a small maximum kernel radius and consequently to a strong
over-fitting effect in the approximation function. This is shown in the Figures 38 and 39.
For an efficient application for noisy data the optimal error tolerance has to be deter-
mined. This can be done by using additional information about the noise level or, if these
informations are not available, be an additional test data set, where ε is modified in a
given interval and the optimal value concerning the test data error is taken. In Figure 40
the approximation function for such an optimal ε is shown.

6 Artifical neural networks

6.1 Introduction

Artificial neural networks are inspired by biological counterparts. The brain consist of
a large number (1011) of highly connected elements (approximately 104 connections per
element) - neurons. In our simplified approach, a neuron can be considered as consisting
of three parts - the dendrites which serve as sensors for electrical signals and carry it into
the cell body, the cell body sums up all the inputs and processes the information and
finally the axon which transmits the output via the synapsis to other neurons. Within
this complex system, a large number of complex information can be stored. Learning
during lifetime consists of a modification of the connections and a varying weight of each
connection before being processed in the cell body. Artificial neural networks are used in
many areas of engineering. The main applications can be divided into pattern recognition
and regression.

6.2 Multilayer Perceptron

6.2.1 Layout

The multilayer perceptron is one of the widely used artificial neural networks, especially
suitable for regression analysis. It consist of an input layer a certain number of hidden
layers and an output layer. Each neuron in the input layer represents a single input
parameter. The neurons of the input layer are connected to neurons of the first hidden
layer. The number of hidden layers and the number of neurons is variable and should be
chosen with respect to the complexity of the system response and the number of available
training patterns. Only forward connections are allowed in a multilayer perceptron. The
neurons in the final output layer represent the output parameter of the regression model.
A schematic drawing of the layout is given in Fig.41 The output al

i of neuron i in layer l
is calculated as

al
i = h

 N l
i∑

j=1

wl−1
ji vl−1

j + bli

 , (36)

where h is the activation function, N l
i is the number of connections to the previous layer,

wl−1
ji corresponds to the weights of each connection and bl is the bias, which represents the

constant part in the activation function. In Fig.42 commonly used activation functions
are illustrated.

Weimar Optimization and Stochastic Days 4.0 – November 28–29, 2007

26



Figure 38: SVR approximation of deter-
ministic data (ε = 0.001; D = 6.00)

Figure 39: SVR approximation of noisy
data with over-fitting (ε = 0.001; D =
1.81)

Figure 40: SVR approximation of noisy
data with automatic error tolerance (ε =
0.16; D = 6.50)
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Figure 41: general layout of a multilayer perceptron

6.3 Training

The training of the neural network is an optimization procedure, in which the weights
and biases of the neural network are determined. For this purpose, a certain a number
of training samples M with corresponding pairs of inputs pi and outputs oi is required.
The mean square error F , which is the average value of the difference between the ap-
proximated response and the outputs, is used as objective in the optimization procedure.

F (w, b) =
1

M

M∑
i=1

ei (37)

ei = |a(pi)− oi|2 (38)

In general, different training algorithms can be applied to solve this optimization proce-
dure. The most important are the standard back-propagation algorithm Rumelhart et al.
(1986), RPROP Riedmiller and Braun (1993), the conjugate gradient method Johansson
et al. (1992) and the scaled conjugate gradient algorithm Moller (1993). In this paper,
the Levenberg Marquardt algorithm Hagan and Menhaj (1994) has been used, since for
small systems with up to 1000 free parameters it was found to be faster compared to
other methods. For all these methods, the gradient g of the objective function F with
respect to the free parameters x (weights w and biases b) is to be calculated. This can
be performed with a variation of the back-propagation algorithm Hagan et al. (1996):

G =
∂F

∂xj

=
2

M

M∑
q=1

N∑
i=1

eq
i (x)

∂eq
i (x)

∂xj

=
2

M

M∑
q=1

[J q(x)]T eq(x) (39)

J q(x) =


∂eq

1(x)
∂x1

...
∂eq

1(x)
∂xn

...
...

∂eq
N(x)
∂x1

...
∂eq

N(x)
∂xn

 , (40)

where J describes the sensitivity of the outputs with respect to the free parameters and
N is the dimension of the output vector. The Hessian can be expressed in a similar way
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hard limit
y = −1 x < 0
y = +1 x ≥ 0

saturating linear
y = −1 x < −1
y = x −1 ≤ x < −1
y = +1 x ≥ 0

positive linear
y = 0 x < 0
y = x x ≥ 0

linear y = x

hyperbolic tangent sigmoid y = ex − e−x

ex + e−x

log-sigmoid y = 1
1 + e−x

Figure 42: activation functions commonly used in multilayer perceptrons

as

H =
∂2F

∂xj∂xk

= 2
M∑

q=1

N∑
i=1

[
∂eq

i (x)

∂xk

∂eq
i (x)

∂xj

+ eq
i (x)

∂2eq
i (x)

∂xj∂xk

]
(41)

=
2

M

M∑
q=1

{
[J q(x)]T J q(x) + 2Sq(x)

}
(42)

H̃ =
2

M

M∑
q=1

{
[J q(x)]T J q(x)

}
. (43)

If we assume Sq to be small, the exact Hessian H can be replaced by H̃ . As a result,
the update of the parameters in the Newton-iteration can be written as

∆x(k) = −H̃
−1

G. (44)

This approach requires the approximated Hessian H̃ to be invertible. However, this
cannot be assured, especially if a high number of neurons in the hidden layer is used and
the size of the training set is small. In order to overcome this problem, an additional
scalar parameter µ is added to all the diagonal elements of H̃ . In the limit case of µ = 0
the algorithm converges to the Newton method (with the approximated Hessian), whereas
for a large parameter µ the update can be approximated by a steepest descent algorithm
with learning rate 1

2µ
:

∆x(k) ≈ − 1

2µ
G(k) , for largeµ. (45)

The parameter µ is initially set to a small value (e.g. 0.01), the update ∆x(k) and the
mean square error F (x(k) +∆x(k)) are calculated. If a reduction of the mean square error
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is obtained, the next iteration step k+ 1 is performed with µ(k+1) = µ(k)/2, otherwise the
iteration step is repeated with a µ(k) increased by a factor of 2.
The initial weights have been calculated from a uniform distribution in the interval [−s, s]
according to Haykin (1999), where s is given by

s =

√
3

Li

(46)

and Li is the number of input connections of the neuron. The initial biases are set to zero.
Due to the random initialization the training process was repeated 10 times to decrease
the influence of the starting values of the weights.

In order to reduce the influence of over-fitting, an early stopping criterion Amari et al.
(1996) is applied. The data set is divided into a training and validation set. The update
of the weights and biases is stopped, if the required accuracy of the mean square error
for the training samples is reached, the mean square error for the validation set starts to
increase or the norm of the gradient of the objective function is smaller than a prescribed
value.
In general, two strategies for learning can be applied - sequential learning and batch
mode learning. In the first approach, the training samples are presented to the learning
algorithm separately in a stochastic order (e.g. randomly) and the free parameters are
updated for each of these training samples to reduce the difference between the network
output and the training sample. In the second approach, the average error for the whole
training set is calculated and the update of the free parameters is performed for the full
set at once. In this investigation, the batch mode was applied, since the convergence
speed of the method increased dramatically compared to the sequential approach.

In the same way, the number of neurons in the single hidden layer is calculated.
Starting with only three neurons, the number of neurons is iteratively increased until no
significant decrease of the objective function is obtained in the validation data set.

7 Numerical examples

In following examples we investigate the approximation quality of the different surrogate
models by means of a complex nonlinear analytical function in 2D, a nonlinear analytical
function in up to 50 dimensions and the applicability in the framework of the significance
and importance filters by means of an analytical and industrial example.

7.1 1D test function

The first example is given to analyse the convergence of the approximation quality of the
different suroogate models depending on the number N of support points on a non-convex
function of the Shepard typ:

ŷ(x) =

n∑
i=1

y(xi)

(
1

‖x− xi‖+ ε

)2

n∑
i=1

(
1

‖x− xi‖+ ε

)2
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Figure 43: Deterministic 1D test function with N = 9, 18, 35 support points.
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with xi = 0.75 + zi, zi = {−15;−8;−6;−3;−1; 0; 1; 4; 7; 15}
and yi = {1;−10;−2; 5;−1; 8; 15;−4; 7; 1}, as shown in Figure 43. As meta-models Mov-
ing Least Squares with regularized (MLS-R) and exponential (MLS-E) weighting function,
Support Vector Regression (SVR) and Multilayer Perceptrons (MLP) are investigated.
The optimal influence radius of the exponential weighting function is determined based
on an adaptive D-approach. The results indicate, that for the deterministic case the SVR
approximation converges much faster than these of MLP and MLS. For a relative large
number of support points MLP, SVR and MLS the approximation is almost identical.

7.2 2D test function

In this example we investigate the well-known two-dimensional test function Teughels
(2003)

f(x) = 0.01
2∑

i=1

(xi + 0.5)4 − 30x2
i + 20xi with − 6 ≤ xi ≤ 6 (47)

for the deterministic case and for the case of noisy data values. For the latter purpose we
modify the original function by adding Gaussian noise with zero mean and standard error
equal to one to each support point value. In the Figures 44 and 45 the two functions are
shown. The test data set, which is of the same size as the support data set, is modified
in the same manner. Both data sets are obtained by Latin Hypercube Sampling with
uniform distribution. The approximation quality is evaluated by the normalized mean
error of 10000 regular distributed evaluation points.

In the Figures 46 and 47 the obtained relative mean errors are shown depending on
the number of support points. The presented values are the average of 100 random sets
for each configuration. As meta-models the polynomial regression, Moving Least Squares
with regularized (MLS-Reg) and exponential (MLS-Exp) weighting function, Support
Vector Regression (SVR) and Multilayer Perceptrons (MLP) are investigated. The opti-
mal influence radius of the exponential weighting function is determined based on the test
data set. The results indicate, that for the deterministic case the MLP approximation
converges much faster than these of SVR and MLS. For the noisy function the convergence
of MLP, SVR and MLS is almost identical. As expected the polynomial regression can
not converge to the exact result due to the high complexity of the function.

7.3 nD test function

In this example we investigate the nonlinear function

f(x) =
n∑

i=1

exp(−x2
i ) + (5− xi)

−1 with 0 ≤ xi ≤ 4 (48)

for different numbers of input variables. In Figure 48 this function is shown for 2 variables.
We investigate the different surrogate models for the cases of 5, 10, 20 and 50 input
variables nV , whereby for every case 2nV , 5nV , 10nV and 20nV Latin Hypercube samples
are used as support points to build the approximation functions. Again a test data set of
same size is used to determine the parameters of the MLS, SVR and MLP models. The
relative mean error is calculated using 10000 uniformly distributed Monte Carlo samples.
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Figure 44: Deterministic 2D test function Figure 45: 2D test function with addi-
tional Gaussian noise
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Figure 46: Relative mean errors for the
deterministic 2D function

0.10

1.00

200100502010

R
el

at
iv

e 
m

ea
n

 e
rr

o
r 

[-
]

Number of support points

Polynom
MLS-Reg
MLS-Exp

SVR
MLP

Figure 47: Relative mean errors for the
2D function with additional noise
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Figure 48: Investigated nonlinear test function for the 2D case
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Figure 49: Relative mean errors for the analytical test function with 5, 10, 20 and 50
input variables
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In Figure 49 the calculated relative mean errors are shown for the different numbers
of input variables depending on the number of support points. Again the results from 100
random sets for each support point configuration are averaged. The figure indicates, that
the polynomial regression and the Moving Least Squares approach with regularized and
exponential weighting function agree almost exactly with each other. For the cases where
enough available support points enable the application of a quadratic base polynomial
these approaches show similar approximation errors as Support Vector Regression. If
only a linear base polynomial can be applied because of the to small number of support
points the polynomial-based approaches show significant higher approximation errors than
SVR. This can be observed for the cases with more than 10 input variables. Similar to the
polynomial-based models the approximation errors of the Multi-Layer Perceptron increase
rapidly for an increasing dimension.

An investigation of this test function with additional Gaussian noise has shown similar
results as the deterministic function. For this reason we do present these results at this
point.

7.4 Dimension reduction by significance and importance filter

Based on the investigations in the previous example we analyze now the effect of the pro-
posed significance and importance filters. For this purpose we investigate three analytical
functions

f1(x) =
n∑

i=1

wi

[
exp(−x2

i )− (5− xi)
−1
]

f2(x) =
n∑

i=1

wi

[
exp(−x2

i )
]

f3(x) =
n∑

i=1

wi

[
exp(−x2

i ) + (5− xi)
−1
]

(49)

with

0 ≤ xi ≤ 4; wi = 1; 1; 1;
1

2
;

1

3
;

1

4
; ... ;

1

i− 2
(50)

where function 1 is weakly nonlinear, function 2 contains nonlinearities of pure exponential
type and function 3 is strongly nonlinear. The test functions are shown in Figure 50.
The weighting factors wi are introduced to obtained a set with some important input
variables and some more unimportant variables, which can be neglected in building up
the approximation models.

In the first step, we analyze the output of the significance and importance filter.
In Figure 51 the calculated Coefficient of Importance for the first 10 input variables are
shown for the deterministic functions by using 20 input variables with 40 and 100 sampling
points. Additionally the probability of the selection of the parameter is shown by assuming
a minimal CoI of 0.02. In the figure the mean values of the CoI with the corresponding
90% interval obtained from 100 independent random sampling sets are displayed. The
quantile value for the significance filter was chosen with 95%. The figure shows clearly
that for function 1 the variation of the CoIs is quite small even for the case with 40
sampling points and the important variables can be identified with high probability. For
the nonlinear cases, especially for function 3, 40 sampling points are not sufficient, since
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Function 1 Function 2 Function 3

Figure 50: Analytical test functions for the investigations of the variable filters

the variation of the CoIs are very high and the important variables are not selected in
all cases. Analogous the probability that unimportant variables will be selected is much
higher than for the weakly nonlinear function. If 100 sampling points are taken for the
nonlinear cases the variation of the calculated CoIs is much smaller and the important
variables can be identified very reliable. A good measure for a sufficient sampling size is
the adjusted Coefficient of Determination (CoD) of the full system, which is in our case
the system with the remaining variables of the significance filter. If this value is around
0.8 or higher the prediction of the Coefficient of Importance will be sufficiently accurate.

In the next step we investigate the influence of noise on the accuracy of the significance
and importance filters. For this purpose we modify the test functions by adding Gaussian
noise with zero mean and increasing standard deviation σξ to the sampling point values.
In Figure 52 the calculated CoIs for function 3 are shown. From the figure we can observe,
that with increasing noise level the CoD of the full system decreases and the variation
of the CoIs increases. However the important variables can be identified with sufficient
probability even for the third case, where the variation of the noise is about 50% of the
variation of the deterministic function.

The final investigation of the filter accuracy is the influence of the problem dimension.
For this case we increase the number of input variables up to 100. In Figure 53 the
obtained CoIs are shown for the deterministic function 3. The variation of the CoIs and
thus the accuracy of the filter is almost similar for 50 input variables as for 20 variables.
For the case with 100 variables the accuracy is not sufficient, which indicates that more
than 100 sampling point would be required for a strong nonlinear function.

Additionally to the accuracy of the proposed filters we investigate the effect of the
filters on the approximation quality of the presented surrogate models. For this purpose
we analyze the relative mean error from 10000 Monte Carlo samples similarly to example
7.3. In Figure 54 the calculated errors are shown for function 2 and 3 with 20 variables and
100 support points depending on the value of the importance filter. The averaged number
of remaining variables are shown additionally in each diagram. The figure clearly shows,
that the application of the filters lead to a significant reduction of the approximation
errors for all investigated surrogate models, but the errors increase above a certain CoI
value where not all important variables are used for the approximation. The differences
between the results of the different meta-models are small. Again the SVR gives shows
its best result for a larger number of variables and the MLP for a smaller dimension.
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Figure 51: CoI for the first 10 of 20 input variables (deterministic functions)
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σξ = 0.0
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Figure 52: CoI for increasing noise ratio (function 3, 100 supports, 20 input variables)
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Figure 53: CoI for increasing dimension (deterministic function 3, 100 supports)
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Function 2, σξ = 0.0
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Function 2, σξ = 0.2
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Function 3, σξ = 0.0
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Figure 54: Approximation errors for the surrogate models depending on the applied filter
parameters (function 3, 20 input variables, 100 support points)
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Figure 55: Industrial application: approximation errors for the surrogate models depend-
ing on the applied filter parameters
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7.5 Industrial application

In this final example we investigate the applicability of the presented filters and approx-
imation models for a real problem, where we have 46 input variables and several output
quantities which are anonymous. Again we apply first the significance and importance
filter and use the remaining set of input variables to build up the approximation model.
We use 100 support points for the surrogate model and 100 test samples to determine the
model parameters and to evaluate the approximation error. In Figure 55 the calculated
relative approximation errors for two representative responses are shown depending on the
filter parameters. The figure indicate a significant reduction of the approximation errors
for all surrogate models for response 1, whereby the MLP approach gives the best results.
The approximation errors for response 2 can be reduced slightly only for the polynomial
based approaches for a significance filter of 97% which corresponds to 27 remaining input
variables. Further reduction of the variable number leads to increasing approximation er-
rors. The SVR and MLP approximation errors are for the reduced systems always larger
as for the full system. This shows, that not for all cases a significant better result can be
achieved. This may be caused by several reasons, e.g. that response 2 contains a large
noise fractions or that to many input variables are important for the approximation. The
usage of an increased number of sampling points could possibly solve this problem.

8 Conclusions

In this paper we have investigated several advanced surrogate models concerning their
applicability in the framework of a robustness evaluation. Based on the results of the
investigated numerical examples we can summarize, that we can not define one best model
type which is promising for all application. We found that Artificial Neural Networks and
Moving Least Squares work very nicely for low dimensional problems with less than 10
input variables. For higher dimensional problems the Support vector Regression method
gives more accurate results especially if the number of available support points is relatively
small. All types of models work similar for noisy data as for the deterministic case, if we
determine the model parameters on the basis of an additional test data set. If this test
data set is not available, the support point set can be subdivided in training and test data
and after the model parameters have been determined the full data set can be used for the
approximation. Our recommendation for the choice of the most proper surrogate model
for a specific problem is to compare the approximation quality of the available models
based on a test data set and select the best approach.

In many real applications not all input variables contribute significantly to the re-
sponse functions. For this cases a selection of important variables and an approximation
on the reduced variable set can increase the approximation accuracy dramatically. For
this purpose we developed an efficient significance and important filter to identify the
important input variables. We could show that this filter combination works very reliable
even for noisy response data and its application can improve the applied approximation
model significantly. For real applications this stands for a dramatic reduction of the
required computational costs within the robustness analysis.
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