

 Current of the second of the second

Evolutionary Strategies for **Multidisciplinary Optimization**

Prof. Dr. Thomas Bäck Managing Director, NuTech Solutions GmbH CTO, NuTech Solutions, Inc.

Overview

Introduction: Optimization and EAs

- Evolutionary Strategies
- Application Examples

Background I

Biology = Engineering (Daniel Dennett)

Introduction:

Optimization Evolutionary Algorithms

Optimization

$$f: M \to \Re, f(\vec{x}) \to \min$$

- ▲ f: objective function
 - High-dimensional
 - Non-linear, multimodal
 - Discontinuous, noisy, dynamic
- $M \subseteq M_1 \times M_2 \times ... \times M_n$ heterogeneous
- A Restrictions possible over $M, f(\vec{x})$
- Good local, robust optimum desired
- Realistic landscapes are like that!

Optimization Creating Innovation

- Illustrative Example: Optimize Efficiency
 - Initial:

4 32% Improvement in Efficiency !

Dynamic Optimization

- Dynamic Function30-dimensional
- 3D-Projection

The Fundamental Challenge

Global convergence with probability one:

 $\lim_{t\to\infty} \Pr(\bar{x}^* \in P(t)) = 1$

- General, but for practical purposes useless
- Convergence velocity:

 $\varphi = E(f_{\max}(P(t+1)) - f_{\max}(P(t)))$

Local analysis only, specific (convex) functions

Interpretended in the second secon

- All optimization algorithms perform equally well iff performance is averaged over all possible optimization problems.
- Fortunately: We are not Interested in "all possible problems"

Evolution Strategies

Generalized Evolutionary Algorithm

initialize population

Evaluation t := 0; Selection I *initialize*(P(t)); (Termination) evaluate(P(t)); 000 while not terminate do P'(t) := *mating_selection*(P(t)); Selection II Mutation **P**^{''}(t) := *variation*(**P**['](t)); Evaluation evaluate(P"(t)); P(t+1) := *environmental_selection*(P⁽⁺(t) ∪ Q); t := t+1; od

Recombination

Evolution Strategy – Basics

- Mostly real-valued search space IRⁿ
 - also mixed-integer, discrete spaces
- Emphasis on mutation
 - *n*-dimensional normal distribution
 - expectation zero
- Different recombination operators
- Deterministic selection
 - 4 (μ , λ)-selection: Deterioration possible
 - ✓ (µ+λ)-selection:
 Only accepts improvements
- $\lambda >> \mu$, i.e.: Creation of offspring surplus

Self-adaptation of strategy parameters.

Representation of search points

Self-adaptive ES with single step size:

• One σ controls mutation for all x_i

▲ Mutation: N(0, σ)

 $\bar{a} = ((x_1, \dots, x_n), \sigma)$

Evolution Strategy:

Algorithms Mutation

Operators: Mutation – one σ

Self-adaptive ES with one step size:

- One σ controls mutation for all x_i
- ▲ Mutation: N(0, σ)

Operators: Mutation – one σ

4 Thereby τ_0 is the so-called learning rate

- Affects the speed of the σ -Adaptation
- $\mathbf{4} \tau_0$ bigger: faster but more imprecise
- $rac{1}{2}$ τ_0 smaller: slower but more precise
- ▲ How to choose $τ_0$?
- According to recommendation of Schwefel*:

$$\tau_0 = \frac{1}{\sqrt{n}}$$

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

Operators: Mutation – one σ

equal probability to place an offspring

18

Evolution Strategy

Algorithms Selection

Evolution Strategy:

Self adaptation of step sizes

Self-adaptation

- A No deterministic step size control!
- A Rather: Evolution of step sizes
 - Biology: Repair enzymes, mutator-genes
- Why should this work at all?
 - Indirect coupling: step sizes progress
 - Good step sizes improve individuals
 - Bad ones make them worse
 - This yields an indirect step size selection

Self-adaptation: Example

- How can we test this at all?
- Need to know optimal step size ...
 - Only for very simple, convex objective functions
 - Here: Sphere model

$$f(\vec{x}) = \sum_{i=1}^{n} (x_i - x_i^*)^2$$

- Dynamic sphere model
 - Optimum locations changes occasionally

 \vec{x} : Optimum

Self-adaptation

Self-adaptation of one step size

- Perfect adaptation
- Learning time for back adaptation proportional n
- Proofs only for convex functions
- Individual step sizes
 - Experiments by Schwefel
- Correlated mutations
 - Adaptation much slower

Mixed-Integer Evolution Strategies

Mixed-Integer Evolution Strategy

Generalized optimization problem:

$$f(r_1, \dots, r_{n_r}, z_1, \dots, z_{n_z}, d_1, \dots, d_{n_d}) \rightarrow min$$

subject to:
$$r_i \in [r_i^{min}, r_i^{max}] \subset \mathbb{R}, \ i = 1, \dots, n_r$$

$$z_i \in [z_i^{min}, z_i^{max}] \subset \mathbb{Z}, \ i = 1, \dots, n_z$$

$$d_i \in D_i = \{d_{i,1}, \dots, d_{i,|D_i|}\}, i = 1, \dots, n_d$$

28

Literature

- H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.
- I. Rechenberg: *Evolutionsstrategie 94*, frommann-holzboog, Stuttgart, 1994.
- In Th. Bäck: Evolutionary Algorithms in Theory and Practice, Oxford University Press, NY, 1996.
- Th. Bäck, D.B. Fogel, Z. Michalewicz (Hrsg.): Handbook of Evolutionary Computation, Vols. 1,2, Institute of Physics Publishing, 2000.

Multidisciplinary Optimization (MDO) Lateral impact rear impact front impact high speed high speed **MDO Front impact** rear impact low speed low speed **Statics Dynamic**

- Different disciplines involved (crash cases, NVH, statics, …).
- Very demanding simulation (multiple CPUs, many hours).
- Large number of parameters and constraints.
- Very few evaluations (shots) possible (often < 300).</p>

Example 1

Courtesy of

MDO Crash / Statics / Dynamics

- Minimization of body mass
- Finite element mesh
 - Crash ~ 130.000 elements
 - ▲ NVH ~ 90.000 elements
- Independent parameters: Thickness of each unit: 109
- Constraints: 18

Algorithm	Avg. reduction (kg)	Max. reduction (kg)	Min. reduction (kg)
Best so far	-6.6	-8.3	-3.3
NuTech ES	-9.0	-13.4	-6.3

MDO Production Runs (I)

- Minimization of body mass
- Finite element mesh
 - Crash ~ 1.000.000 elements
 - ▲ NVH ~ 300.000 elements
- Independent parameters:
 - Thickness of each unit: 136
- Constraints: 47, resulting from various load cases
- 180 (10 x 18) shots ~ 12 days
- No statistical evaluation due to problem complexity

- 13,5 kg weight reduction by NuTech's ES.
- Beats best so far method significantly.
- Typically faster convergence velocity of ES.
- Reduction of development time from 5 to 2 weeks allows for process integration.
- Still potential for further improvement after 180 shots.

Example 2

Courtesy of

MDO ASF® Front Optimization

- Pre-optimized Space-Frame-Concept improvement possible?
- Goal: Minimization of structural weight
- Degrees of freedom:
 - Wall thicknesses of the semi-finished products sheet & profile
 - Material characteristic profile
- Limitation of design space:
 - Semi-finished products technology
 - Technique for joining parts

MDO ASF[®] Disciplines

Damage according to insurance classification, Component Model, 2 CPUs

Global dynamic stiffness, Trimmed Body, 1 CPU

Front Crash (EURO NCAP), Complete Body 4 CPUs

Resources per Design: 7 CPUs, approx. 23h

Concluding Remarks

- ES are very useful for MDO tasks
 - High dimensionality
 - Few evaluations (shots) possible
 - Mixed-integer tasks
 - MCDM tasks

Thank You!

Corporate Headquarters:

Charlotte, NC

121 West Trade Street Interstate Tower, Suite 1900 Charlotte, NC 28202

Phone: (704) 943-5400 Fax: (704) 943-5401

Dortmund, Germany

Martin-Schmeisser-Weg 15 44227 Dortmund Germany Phone: +49-231-725-4630

Warsaw, Poland

Łucka 11, lok.508 00-842 Warszawa Poland Phone: (+4822) 656-33-99 Fax: (+4822) 656-31-21

