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OverviewOverview

Introduction: Optimization and EAs
Evolutionary Strategies
Application Examples
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Background IBackground I
Biology = Engineering (Daniel Dennett)
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Introduction:Introduction:

OptimizationOptimization
Evolutionary AlgorithmsEvolutionary Algorithms
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OptimizationOptimization

f : objective function 
High-dimensional
Non-linear, multimodal
Discontinuous, noisy, dynamic

M ⊆ M1 × M2 ×...× Mn heterogeneous
Restrictions possible over  
Good local, robust optimum desired
Realistic landscapes are like that! Global Minimum

Local, robust 
optimum
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Optimization Creating InnovationOptimization Creating Innovation
Illustrative Example: Optimize Efficiency

Initial:

Evolution:

32% Improvement in Efficiency !
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Dynamic OptimizationDynamic Optimization

Dynamic Function
30-dimensional
3D-Projection
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Iterative Optimization MethodsIterative Optimization Methods

General
description:

Actual Point
New Point

Directional vector

Step size (scalar)

1+txv

txv
tt vs v⋅

1x

2x

3x
At every Iteration:

Choose direction
Determine step size

Direction:
Gradient
Random

Step size:
1-dim. optimization
Random
Self-adaptive
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Global convergence with probability one:

General, but for practical purposes useless
Convergence velocity:

Local analysis only, specific (convex) functions
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The Fundamental ChallengeThe Fundamental Challenge
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x1

x2

f(x1,x2)

(x*1,x*2)

f(x*1,x*2)

An Infinite Number of Pathological An Infinite Number of Pathological 
Cases !Cases !

NFL-Theorem:
All optimization algorithms perform equally well iff
performance is averaged over all possible 
optimization problems.

Fortunately: We are not Interested in „all possible 
problems“
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Evolution StrategiesEvolution Strategies
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Generalized Evolutionary AlgorithmGeneralized Evolutionary Algorithm

t := 0;
initialize(P(t));
evaluate(P(t));
while not terminate do

P‘(t) := mating_selection(P(t));
P‘‘(t) := variation(P‘(t));
evaluate(P‘‘(t));
P(t+1) := environmental_selection(P‘‘(t) ∪ Q);
t := t+1;

od
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Evolution Evolution StrategyStrategy –– Basics Basics 
Mostly real-valued search space IRn

also mixed-integer, discrete spaces
Emphasis on mutation

n-dimensional normal distribution
expectation zero

Different recombination operators
Deterministic selection

(μ, λ)-selection: Deterioration possible
(μ+λ)-selection: Only accepts improvements

λ >> μ, i.e.: Creation of offspring surplus
Self-adaptation of strategy parameters.
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Representation of search points Representation of search points 

)),,...,(( 1 σnxxa =v

Self-adaptive ES with single step size:
One σ controls mutation for all xi

Mutation: N(0, σ)
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Evolution Strategy:Evolution Strategy:

AlgorithmsAlgorithms
MutationMutation
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Operators: Mutation Operators: Mutation –– one one σσ
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Self-adaptive ES with one step size:
One σ controls mutation for all xi

Mutation: N(0, σ)
Individual before mutation

Individual after mutation

1.: Mutation of step sizes

2.: Mutation of objective variables

Here the new σ‘ is used!



17

Operators: Mutation Operators: Mutation –– one one σσ

n
1

0 =τ

Thereby τ0 is the so-called learning rate
Affects the speed of the σ-Adaptation
τ0 bigger:   faster but more imprecise
τ0 smaller: slower but more precise
How to choose τ0?
According to recommendation of Schwefel*:

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.
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Operators: Mutation Operators: Mutation –– oneone σσ

Position of parents (here: 5)

Offspring of parent lies on 
the hyper sphere (for n > 10);
Position is uniformly distributed

Contour lines of 
objective function
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Evolution StrategyEvolution Strategy

AlgorithmsAlgorithms
SelectionSelection



20

Operators: SelectionOperators: Selection
Example: (2,3)-Selection

Example: (2+3)-Selection

Parents don‘t survive!
Parents don‘t survive …

… but a worse offspring.

… now this offspring survives.
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Exception!

Possible occurrences of selection
(1+1)-ES: One parent, one offspring, 1/5-Rule
(1,λ)-ES: One Parent, λ offspring

Example: (1,10)-Strategy
One step size / n self-adaptive step sizes 
Mutative step size control
Derandomized strategy

(μ,λ)-ES: μ > 1 parents, λ > μ offspring
Example: (2,15)-Strategy
Includes recombination
Can overcome local optima

(μ+λ)-strategies: elitist strategies

Operators: SelectionOperators: Selection
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Evolution Evolution StrategyStrategy::

SelfSelf adaptationadaptation ofof
stepstep sizessizes
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SelfSelf--adaptationadaptation

No deterministic step size control!
Rather: Evolution of step sizes

Biology: Repair enzymes, mutator-genes
Why should this work at all?

Indirect coupling: step sizes – progress
Good step sizes improve individuals
Bad ones make them worse
This yields an indirect step size selection
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SelfSelf--adaptationadaptation: : ExampleExample

How can we test this at all?
Need to know optimal step size …

Only for very simple, convex objective functions
Here: Sphere model

Dynamic sphere model
Optimum locations changes occasionally
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SelfSelf--adaptationadaptation: : ExampleExample
Objective function value

… and smallest step size
measured in the population

average …

Largest …

According to theory
ff optimal step sizes
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SelfSelf--adaptationadaptation

Self-adaptation of one step size
Perfect adaptation
Learning time for back adaptation proportional n
Proofs only for convex functions

Individual step sizes
Experiments by Schwefel

Correlated mutations
Adaptation much slower
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MixedMixed--IntegerInteger
Evolution StrategiesEvolution Strategies
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MixedMixed--Integer Evolution StrategyInteger Evolution Strategy

Generalized optimization problem:
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MixedMixed--Integer ES: MutationInteger ES: Mutation

Learning rates
(global)

Learning rates
(global)

Geometrical
distribution

Mutation 
Probabilities
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Multidisciplinary Optimization (MDO)Multidisciplinary Optimization (MDO)
Lateral impact

MDO

rear impact
high speed

Statics

front impact
high speed

Front impact
low speed

Dynamic

rear impact
low speed

Different disciplines involved (crash cases, NVH, statics, …).
Very demanding simulation (multiple CPUs, many hours).
Large number of parameters and constraints.
Very few evaluations (shots) possible (often < 300).
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Example 1Example 1

Courtesy ofCourtesy of
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MDO Crash / MDO Crash / StaticsStatics / Dynamics/ Dynamics

Minimization of body mass 
Finite element mesh

Crash ~ 130.000 elements
NVH ~ 90.000 elements

Independent parameters: 
Thickness of each unit: 109
Constraints: 18

-6.3-13.4-9.0NuTech ES
-3.3-8.3-6.6Best so far

Min. reduction (kg)Max. reduction (kg)Avg. reduction (kg)Algorithm
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Minimization of body mass 
Finite element mesh

Crash ~ 1.000.000 elements
NVH   ~    300.000 elements

Independent parameters: 
Thickness of each unit: 136

Constraints: 47, resulting from various load cases
180 (10 x 18) shots ~ 12 days
No statistical evaluation due to problem complexity

MDO Production Runs (I)MDO Production Runs (I)
Lateral impact

MDO

rear impact
high speed

Statics

front impact
high speed

Front impact
low speed

Dynamic

rear impact
low speed
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MDO Production Runs (II)MDO Production Runs (II)

13,5 kg weight reduction by NuTech’s ES.
Beats best so far method significantly.
Typically faster convergence velocity of ES.
Reduction of development time from 5 to 2 weeks allows for 
process integration.
Still potential for further improvement after 180 shots.

Generations

M
as

s
Initial Value

NuTech’s Evolution Strategy
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Example 2Example 2

Courtesy ofCourtesy of
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MDO ASFMDO ASF®® Front Front OptimizationOptimization
Pre-optimized Space-Frame-Concept – improvement possible?

Goal: Minimization of structural weight

Degrees of freedom:
Wall thicknesses of the semi-finished products sheet & profile

Material characteristic profile

Limitation of design space:
Semi-finished products technology

Technique for joining parts
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MDO ASFMDO ASF®® DisciplinesDisciplines

Front Crash (EURO NCAP),
Complete Body
4 CPUs

Global dynamic stiffness,
Trimmed Body,
1 CPU

Damage according
to insurance classification,
Component Model,
2 CPUs

Resources per Design: 7 CPUs, approx. 23hResources per Design: 7 CPUs, approx. 23h
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MDO Run ComparisonMDO Run Comparison
Initial design, constraints violated

Optimum (exp. 924),
Constraints satisfied

M
as

se
M

as
s

Increased
weight!

M
as

s

Optimum (exp. 376),
Constraints satisfied

Decreased
weight!

Best so far optimizer
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Concluding RemarksConcluding Remarks

ES are very useful for MDO tasks
High dimensionality
Few evaluations (shots) possible
Mixed-integer tasks
MCDM tasks
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Thank You!Thank You!
Corporate Headquarters:
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Phone: +49-231-725-4630 
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