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Abstract

With the extention of high-speed railway networks, existing bridges have to be assessed.
In many cases a suitable numerical model is required which can represent the basic dynam-
ical properties of the existing system. In general, the correct modeling of an existing bridge
is a complicated task. Sometimes additional vibration tests have to be performed to inves-
tigate the dynamical properties of the bridge. With the experimentally obtained results a
numerical model can be updated to represent an almost realistic behavior. Such models can
then be used to assess the bridge with respect to the new demands.

The current paper provides an approach for an optimization-based model updating using
vibration data. An example is presented for a high-speed railway bridge at the line Cologne-
Brussels. The results are validated by using four different optimization runs.
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1 Introduction
European rail companies are extending their high-speed railway networks. These projects in-
clude both the construction of new lines and the improvement of existing lines. In the case of
an enhancement of an existing line, it is required to proof all bridges with respect to resonance
problems, which can occur during train passages. In civil engineering practice this proof is usu-
ally performed by numerical analyses. However, the conformance of all requirements can not
always be proven by numerical analyses. In these cases experimental investigations are carried
out to identify the dynamic structural behavior of the existing bridge.

Zabel et al. (2007) concludes, that the dynamic properties of an existing railway bridge can
differ considerably from those of the numerical model. This can be explained by assumptions
for the respective numerical models, that do not necessarily coincide with the properties of
the existing structure. Even though in many practical applications an experimental proof of
the conformance of the requirements is sufficient, there are also situations where an accurate
numerical model is desired. This is important, for example, to calculate the structural behavior
for several load cases.

To obtain a numerical model that can be used for predictive analyses uncertain system pa-
rameters have to be identified based on experimental data. This paper reports about a study
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concerning the identification of several system parameters of a numerical model of a high-
speed railway bridge with tracks on ballast that was analyzed within the RFCS research project
DETAILS. It is described, how a numerical model of a complex mechanical system consisting
of an elastically supported composite bridge deck, a layer of ballast, and the tracks can be up-
dated, such that it meets the modal behavior identified from in-situ tests, utilizing numerical
optimization.

2 General aspects of model updating
Model updating is a method to improve the correlation between the numerical model and a
realistic structure using measured data (Steenackers and Guillaume (2006)). In the best case,
a numerical model can be determined which best fits the measured data. Many errors can
effect this procedure. These errors may be an inaccurate model or imprecise and incomplete
measurements. Also the updating method itself can be affected by errors.

The first emphasis within a model updating is to avoid or minimize as many errors as possi-
ble to obtain realistic results. The second emphasis is to describe the errors in their quality and
quantity and implement this information in the updating process. Otherwise the model updat-
ing will be significantly influenced by the errors. A very good introduction to model updating
is given by Friswell and Mottershead (1995). Basically, three locations can be distinguished,
where errors can occur:

• Errors associated with measured data

• Errors associated with numerical model

• Errors associated with updating method

Errors associated with measured data Measurements are usually not perfectly precise.
Electronic noise is generated by instruments. Random and systematic errors are introduced
by external excitation sources. Systematic errors can occur, for example, due to the additional
mass of sensors (normally less relevant for railway bridges) or mistakes in documentations.
Signal processing errors may be aliasing and leakage. System identification problems are, for
example, the inversion of an ill-conditioned matrix.

Additional errors arise due to an incomplete description of the system behavior by the mea-
sured data. Samples are acquired at discrete time instants over finite period, which influence the
resolution and range of the frequency. The sensor positions and measurement degree of free-
doms are also limited in comparison to a valid numerical model (e.g., finite element model).
Friswell and Mottershead (1995)

Errors associated with numerical model In most cases a finite element model will be used
as the numerical model to approximate the structure. The most common errors in finite element
models are discretization errors and wrong or imprecise boundary conditions. Furthermore,
insufficient approximations of physical or geometrical nonlinearities are present.

The definition and choice of the updating parameters (also called design parameters) are also
important. Generally, the number of updating parameters should be the smallest meaningful
selection of the most sensitive and most uncertain model parameters.
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Errors associated with updating methods Depending on the chosen method different errors
can occur. Direct methods are mostly affected by numerical errors like ill-conditioned matrices,
whereas indirect methods, such as optimization procedures, can have convergence problems in
finding the exact or correct minima.

3 Optimization - a suitable model updating technique
Optimization strategies are frequently used tools for model updating. In comparison to other
methods, they are flexible and can be used for moderate numerical models. Due to the iterative
strategy, many calculations of the problem are needed to obtain a accurate solution. Depending
on the optimization method, problems can occur, if local optima are existing.

Very often a high number of uncertain parameters are present in the model. Therefore, it
is recommended to use a sensitivity analysis to reduce the number of updating parameters. To
avoid the problem of a limited number of updating parameters or to find a local minimum, an
evolutionary algorithm is advisable.

3.1 Sensitivity analysis
To identify the most important updating parameters, a sensitivity analysis is recommended.
This analysis can include the calculation of the linear and quadratic correlation coefficients be-
tween the updating parameters and the output parameters, the coefficient of determination, and
the principal component vector. It is recommended to use updating parameters which have a
linear correlation coefficient greater than 0.5. The coefficient of determination for one output
parameter should be greater than 80%. If a nonlinear correlation is expected, the rank corre-
lation coefficient according to Spearman (1904) should be used to get information about the
sensitivity between the design variables and the output variables.

Due to the fact that the correlation coefficients are based on a regression model, they depend
on the quality and arrangement of the design and output variables. Clusters and outliers should
be avoided to get meaningful results. For example, it has to be ensured that the correct mode will
be chosen, when MAC-values (Allemang and Brown (1982)) are used to compare the modes of
the numerical model and the real structure.

Further description of the sensitivity analysis is given in optiSLang (2006).

3.2 Optimization method
Basically, three standard optimization methods are distinguished:

• gradient based methods,

• evolutionary algorithms (genetic algorithms, evolution strategies, evolutionary program-
ming), and

• response surface method (RSM) or adaptive response surface method (ARSM).
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Gradient based optimization methods are using mainly Quasi-Newton methods, like LBFGS,
NLPQL (Nonlinear Programming using a Quadratic or Linear Least-square algorithm) intro-
duced by Schittkowski (1985) , or NLPQLP. Line search algorithms ensure the stepwise conver-
gence to the optimum using gradients. According to optiSLang (2006), they are recommended
for solving smooth nonlinear optimization problems under the following restrictions:

• The number of design variables is not too large.

• The functions and gradients can be evaluated with sufficiently high precision. Hence,
round-off errors of parallel programming with explicite FEM-codes, adaptive procedures,
or single precision format limitations have to be avoided.

• The problem is smooth and well-scaled.

Evolutionary algorithms are stochastic search methods. They imitate natural biological evo-
lution processes like adaption, selection, and variation. To obtain a better approximation for the
solution of the optimization problem, a population of artificial individuals searches the design
space of possible solutions based on the Darwin principle ‘survival of the fittest’. The three
main classes are genetic algorithms (e.g., Holland (1975)), evolution strategies (e.g., Rechen-
berg (1973)) and evolutionary programming (e.g., Fogel et al. (1966)). Gradient-based informa-
tion does not have to be available, which is often difficult for binary or discrete search spaces.
Compared to other optimization strategies, these algorithms are more able to find the global
minimum if many local minima are present. Unfortunately, significantly more numerical effort
has to be invested to obtain the same accuracies. optiSLang (2006) recommends the application
of evolutionary algorithms:

• in all cases when gradient based optimization or response surface approximation fails,

• in case of discrete or binary variables dominating the response, and

• in case of a very high number of variables and/or constraints.

Response surface methods generate a response surface with appropriate approximation func-
tions on a suitable set of discrete support points of the objective function. The optimization itself
is then performed on the response surface using gradient based or evolutionary algorithms. To
approximate the response, several methods like least square or moving least square approxima-
tions are possible. The resulting response surface has to be well qualified to represent global
trends of the optimization problem. Adaptive response surface methods (e.g., Etman et al.
(1996), Kurtaran et al. (2002) ensure the trends by establishing the response surface adaptively.
The extremely fast convergence is the main advantage of this method. It should be applied to
reasonably smooth problems with not more than 10 continuous variables.

3.3 Design variables and output variables
For the application of finite element model updating the design variables can be

• material properties,

• geometry data,
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• boundary conditions,

• modeling parameters, or

• loads.

For each of those variables, a lower and upper bound have to be defined. If some combinations
of design variables are not possible, constraints can be applied as well.

The design variables are linked with the output variables. Hence a numerical model is
necessary which can connect the design variables with the output variables in the most realistic
way. Obviously, the output variables should be comparable with the features extracted from
measured data.

Those features are, for example,

• eigenfrequencies,

• mode shapes, modal deflections, modal curvatures,

• spectra from a Fast Fourier Transformation,

• Frequency Response Functions (FRF),

• Impulse Response Functions (IRF),

• wavelet decompositions,

• wavelet packet energy,

• wavelet packet energy of the modified IRF,

• maximum / minimum of time histories,

• spectrum of time series, and

• rainflows of responses.

However some of the suggested objective functions require the measurement and simulation
of the excitation. This is not always possible, for example, for ambient excitation. Due to
measurement errors, it is recommended to use a set of global and local criteria to increase the
possibility to gain correct values.

3.4 Objective function
A perfect optimization function is sensitive to all design parameters and has a smooth shape.
A well-defined global optimum is required to guarantee the uniqueness of the solution. An
exhaustive comparison of several objective function by means of an academic example has
been performed in Zabel and Brehm (2009).

In the context of stochastic model updating, a certain finite element model should be found,
which best represents the measured data. The features extracted from measured data can be
collected in a random vector zm, which follows a multivariate distribution with the density
pm, the mean value vector zm and the covariance matrix Cov (zm, zm). Analogous a random
vector zj can be defined, which contains the features extracted from the numerical model in the
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optimization step j. The random vector zj depends on the vector of design variables θj and is
based on a multivariate distribution with the density pj . The mean value vector is given by zj
and the covariance matrix is denoted by Cov (zj, zj).

During the optimization the design parameters should be modified in a way that the objective
function I based on a certain distance between the random vectors zj and zm will be minimized.

I (zj (θj) , zm) −→ min (1)

Depending on the statistical information extracted from the measurement, several objective
functions can be applied to solve the optimization problem and to obtain the mean value θj
and the covariance matrix Cov (θj,θj). It has to be mentioned that the variation of the design
parameters can only be identified, if the variation of the features based on the measurements
and the simulation is included in the objective function.

If only the mean value vectors zm and zj of the measured and simulated data are available,
the weighted Euclidean distance can be used:

IE (zj, zm) =

√
(zm − zj)

T W (zm − zj) (2)

The matrix W is a weighting matrix which can be applied to regularize the function or to adjust
the weights of certain features.

The Euclidean distance becomes the Mahalanobis distance (Mahalanobis (1936)), if the
inverse of covariance matrix Cov (zm, zm)−1 of the measured feature vector is used as weighting
matrix W.

IM (zj, zm) =

√
(zm − zj)

T Cov (zm, zm)−1 (zm − zj) (3)

If the mean values and the covariance matrix of the measured and simulated values are
given, the Kullback-Leibler relative entropy function can be applied. More details can be found
in Kakizawa et al. (March 1998). The Kullback-Leibler distance Kullback (1978) is defined by

IKL (zj, zm) = Epj

[
ln
pj(x)

pm(x)

]
=

∞∫
−∞

pj(x) ln
pj(x)

pm(x)
dx, (4)

where pj(x) and pm(x) are the densities of the distributions zj and zm, respectively. Epj
is

the expectation value under the density pj(x). Kakizawa et al. (March 1998) shows that for
multivariate normal distributions zi and zm with dimension N , Equation (4) simplifies to

IKL (zj, zm) =
1

2

(
tr
(
Cov (zj, zj) Cov (zm, zm)−1)− ln

|Cov (zj, zj) |
|Cov (zm, zm) |

−N
)

+
1

2

(
(zm − zj)

T Cov (zm, zm)−1 (zm − zj)
)
,

(5)

where | · | denotes the determinant of a matrix and tr (·) is the trace of a matrix.
Another statistical distance has been proposed by Bhattacharyya (1943)

IB (zj, zm) = − lnEpj

[(
pm(x)

pj(x)

) 1
2

]
= − ln

∞∫
−∞

pj(x)

(
pm(x)

pj(x)

) 1
2

dx, (6)
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which simplifies to

IB (zj, zm) =
1

2

(
ln
|1
2

(Cov (zj, zj) + Cov (zm, zm)) |
|Cov (zm, zm) |

− 1

2
ln
|Cov (zj, zj) |
|Cov (zm, zm) |

)
+

1

8

(
(zm − zj)

T

(
Cov (zm, zm) + Cov (zj, zj)

2

)−1

(zm − zj)

) (7)

in case of multivariate normal distributions zi and zm (Kailath (1967)). The Bhattacharyya
distance is equivalent to the Chernoff distance (Renyi (1961))

IC (zj, zm) = − lnEpj

[(
pj(x)

pm(x)

)α]
(8)

for α = 0.5.
Khodaparast and Mottershead (2008) proposed a distance, where the weighted Euclidean

norm and the Frobenius norm of the covariance matrices are combined.

IEF (zj, zm) = ‖Cov (zm, zm)− Cov (zj, zj) ‖F +
1

2

(
(zm − zj)

T W (zm − zj)
)

(9)

The matrix W is a weighting matrix similar to Equation (2).

4 High-speed railway bridge Erfttal

4.1 Finite element model of the bridge
To keep the number of degree-of-freedom as small as possible the finite element model has been
modeled with shell, beam, and spring elements.

Concrete slab, support beams and ballast Shell elements with four nodes are used for
the concrete slab. The two concrete slabs are made of concrete of type B25(C20/25) and
B35(C30/37). In Schneider (1998) the Young’s modulus is denoted by 2.9 1010 and 3.2 1010

N/m2, respectively. The coefficient of variation 0.15 is given in Faber (2000). The density is de-
fined to be 2400 kg/m3 and the Poisson ratio is 0.2. The support beams have the same material
behavior as the concrete slab.

The ballast has a density between 1700 and 1900 kg/m3. The stiffness of the ballast is
neglected in conventional considerations. However, in the current model, the mass and the
stiffness will be added to the concrete slab.

The connections between the two superstructures and between the superstructures and the
soil, both established by the ballast, are realized by springs (3 translational and 2 rotational
degree-of-freedom).

HEM1000 steel beams The embedded HEM1000-beams are modeled with 2-node beam el-
ements. The geometry parameters of the section are given in Schneider (1998) and assumed to
be deterministic.

According to Schneider (1998), the Young’s modulus, Poisson ratio, and density of steel are
2.1 1011 N/m2, 0.3, and 7850 kg/m3, respectively. The coefficient of variation of the Young’s
modulus is set to 0.03 (Faber (2000)).
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Table 1: Static stiffness of the elastomeric bearings with a shear modulus of 1 106 N/m2

Stiffness Bearing type 1 400x500 Bearing type 2 450x550
kux 3.9000 106 N/m 4.8490 106 N/m
kuy 3.9000 106 N/m 4.8490 106 N/m
kuz 7.1044 108 N/m 1.0769 109 N/m
krx 1.5407 107 Nm/rad 2.8551 107 Nm/rad
kry 7.5819 106 Nm/rad 1.5147 107 Nm/rad
krz 1.0187 105 Nm/rad 1.5813 105 Nm/rad

Elastomeric bearings The elastomeric bearings are represented by springs with 3 transla-
tional and 3 rotational degree-of-freedom. The stiffness has been adopted by DINEN1337-3
(2005). Thus, the static stiffness of elastomeric bearing is given in Table 1.

According to DINEN1337-3 (2005) the shear modulus of the bearing and, consequently, the
stiffness depends on the fabrication, temperature, and aging of the material. The possible range
for the shear modulus G after the fabrication at (23±5)◦C is 0.6 106 N/m2 and 1.35 106 N/m2.
At a temperature of (-25±2)◦C the shear modulus should not be higher than 3 times the shear
modulus at fabrication temperature. During aging, the shear modulus can increase by 0.15 106

N/m2. In addition, the dynamic shear modulus can be 1.25 to 3 times higher than the static
shear modulus. Finally, the dynamic shear modulus during the measurement at a temperature
of around 15◦C can vary approximately between 0.75 106 N/m2 and 6.3 106 N/m2 with a mean
value of about 2.5 106 N/m2.

Rail, pads, and sleepers For this kind of structure, the rail has an important influence on the
structure’s behavior. Hence, the rail with sleepers and pads are modeled. The sleepers and rails
are 2-node beam elements connected with springs (rail pads). The connection to the slab is
given by springs between the sleepers and the slab.

A collection of the vertical dynamic stiffness of pads is given in Knothe (2001). Thereby,
the values differ between 0.6 108 N/m and 7.7 108 N/m.

The material parameters of rail steel are similar to those of structural steel. The sleepers
(type B75) and rail (UIC60) are described for example in Matthwes (2003). The concrete of the
sleeper is of type B60 (C50/60) and has a static Young’s modulus of about 3.7 1010 (Schneider
(1998)). Faber (2000) suggests a coefficient of variation of about 0.15.

An isometric view of the finite element model generated with SLang (2007) is shown in

Figure 1: Longitudinal section of the finite element model
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Figure 2: Cross section of the finite element model

Figure 3: Isometric view of the finite element model

Figure 3. More detailed information of the model can be extracted from Figures 1 and 2.

4.2 Sensitivity analysis
Since the uncertainty of the identification of a sensible parameter set by a numerical optimiza-
tion grows and the probability to find the global optimum decreases with an increasing number
of design variables, a reduced set of the 36 updating parameters has to be selected. This was the
motivation to perform a sensitivity analysis. The linear and quadratic correlation coefficients
are presented in Figures 4 and 5, respectively. By excluding all coefficients between -0.2 and
0.2 the important parameters can be extracted. The most important updating parameter is the
vertical stiffness of the gap. The remaining 14 updating parameters are indicated in Table 3.
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Figure 4: Linear correlation matrix of input and output variables using 500 latin hypercube
samples

Figure 5: Quadratic correlation matrix of input and output variables using 500 latin hypercube
samples
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Figure 6: Parameters of the genetic algorithm

4.3 Optimization
By using the 14 most important updating parameters (bold fonts in Table 3), the model updating
by means of optimization will be undertaken. The genetic algorithm provided by the software
optiSLang (2006) was used. Figure 6 shows the chosen parameters of the algorithm.

By the previously performed system identification, mean values µ and standard deviation
σ of the frequencies f and the modal vectors Φ of the first seven modes can be extracted. To
consider the mean values and variances of the frequencies, an objective function similar to
Equation (3) was used. By scaling the residuals of the frequencies, MAC-values and selected
items of the modal displacements, the objective function can be written as

I = 1.0I1 + 1.0I2 + 0.01I3 (10)

with

I1 =
7∑
i=1

‖µfm
i − µf

j
i ‖

σfmS
with S =

7∑
i=1

µf
m
i

7σfm (11)

I2 =
7∑
i=1

(1−MAC(Φm
i ,Φ

j
i )) (12)

I3 =
2∑
i=1

∑
h

‖Φm
i [j]− Φj

i [h]‖ with h = 1, 11, 12, 22, 23, 33, 34, 44 (13)

whereas the superscripts m and j denote the values extracted from the measurement and
simulation. The weightings are set according to engineering judgment. The selection of h cor-
responds to the modal deflections at specific measurement points in the vicinity of the bearings.

4.4 Results of model updating
The optimization was performed four times with always the same initial settings of the opti-
mization algorithm. The final values of the weighted objective functions are always very similar.
However, the very best result (run 4) is presented in Tables 2 and 3. In general, all frequencies
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Figure 7: Comparison of obtained output values.

Optimal design variables
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Figure 8: Comparison of optimal design variables from four different optimization runs. The
stiffness of the springs are given as logarithmic values.

are close to the measured values and the MAC values are close to 1. Only the frequency of the
third mode has a deviation of 13.1% with respect to the experimentally determined frequencies.

It can be observed, that the coefficients of variation (cov) of the measured frequencies cor-
relate with the deviation between the frequencies obtained from simulation and measurement.
For example, the frequency with the highest coefficient of variation has the largest error. This
can be explained to a certain extent by the introduction of weighting factors in the objective
function (Equation (11)), which depend on the coefficient of variation (cov).

The values of the output parameters of all four optimization runs are given in Table 4.
The low coefficient of variation (cov) of the output parameters show the good quality of the
optimization algorithm. The coefficient of variation of the frequencies of the measurement
(Table 2) and of the simulation (Table 4) are close to each other. Figure 7 summarizes the mean
values and the standard deviations of the frequencies obtained from the optimization runs with
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respect to the mean values of the experimental modal analysis. The mean values and standard
deviations of the modal assurance criterion is visualized in Figure 7 on the right hand side.

The optimized updating parameters of each optimization run are collected in Table 5. The
coefficient of variation (cov) indicates the sensitivity of the parameter with respect to the objec-
tive function. In some cases the parameters reach the defined boundaries. However, enlarged
design spaces for these parameters are physically not meaningful. The results of all four opti-
mization runs are presented in Figure 8, where values of the design variables are given as ratio
to their boundaries. It can be observed that the stiffness of the springs associated with the gap
between the superstructures can be identified with high accuracy, whereas, for example, the
stiffness between the slab and the sleepers is not sensitive enough to gain reliable results.

5 Conclusion
The application of optimization strategies to model updating problems is possible. However,
the success depends on several factors, like a smooth objective function which is sensitive to
all unknown design parameters. Even though many numerical tools are available, a full auto-
matic model updating is not possible. The engineer’s experience and judgment is essential for
reasonable model updating results.

For the given example of the high-speed railway bridge Erfttal, the modeling of the finite
element model was important. In the present case, the subsequent sensitivity analysis was
informative enough to select a suitable number of design parameters for the optimization. Due
to the high number of 14 design variables, a genetic algorithm has been used. To verify the
obtained optimal solution, four independent optimization runs have been performed. The gained
modal parameters are similar for all runs and close to the modal parameters extracted from the
experimental modal analysis. The variation of the design variables with respect to the allowed
range of the parameters presents an information about the final sensitivity and reliability of the
optimal values of the design variables.

Further research is concentrated on the investigation of the influence of uncertain measured
data within the model updating procedure.
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Table 2: Comparison of the natural frequencies and mode shapes of the measurement and
simulation

Mode Natural Frequency MAC Mode shape
Measurements Simulation Error Measurement (blue)

mean[Hz] (cov) [Hz] [%] Simulation (red)

1 3.68 (0.00174) 3.655 -1.1 0.991

2 5.24 (0.00610) 5.604 6.3 0.981

3 9.36 (0.01358) 10.699 13.1 0.933

4 13.17 (0.00721) 12.458 -5.4 0.958

5 13.71 (0.01219) 14.082 2.5 0.942

6 15.09 (0.01392) 15.089 0.1 0.877

7 20.98 (0.01097) 20.972 0.1 0.907
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Table 3: Results of the optimization

# Parameter Unity initial value lower bound upper bound optimum
1 Young’s m. B25 + Ballast N/m2 2.90 1010 2.70 1010 4.50 1010 3.28 1010

2 Poisson Ratio B25 - 2.00 10−1 1.80 10−1 2.20 10−1

3 Density B25 + Ballast kg/m3 3.95 103 3.00 103 4.00 103 3.00 103

4 Young’s m. B35 + Ballast N/m2 3.20 1010 2.90 1010 4.50 1010 3.06 1010

5 Poisson Ratio B35 - 2.00 10−1 1.80 10−1 2.20 10−1

6 Density B35 + Ballast kg/m3 3.95 103 3.00 103 4.00 103 3.66 103

7 Young’s m. HEM1000 N/m2 2.10 1011 2.00 1011 2.30 1011

8 Poisson Ratio HEM1000 - 3.00 10−1 2.50 10−1 3.50 10−1

9 Density HEM1000 kg/m3 7.85 103 7.70 103 8.00 103

10 Young’s modulus sleeper N/m2 3.70 1010 3.00 1010 5.00 1010

11 Poisson Ratio sleeper - 2.00 10−1 2.00 10−1 3.00 10−1

12 Density sleeper kg/m3 2.20 103 2.20 103 3.00 103

13 Shear m. Elastomer 1 N/m2 1.50 106 9.40 105 4.50 106 3.22 106

14 Shear m. Elastomer 2 N/m2 1.00 106 9.40 105 4.50 106 1.88 106

15 Ballast Gap ux N/m 3.00 107 3.00 105 3.00 1011

16 Ballast Gap uy N/m 5.00 108 5.00 105 5.00 1011

17 Ballast Gap uz N/m 3.00 106 3.00 105 9.49 107 4.01 106

18 Ballast Gap rx Nm/rad 1.00 101 1.00 101 1.00 105

19 Ballast Gap ry Nm/rad 1.00 101 1.00 101 1.00 1010 9.83 107

20 Ballast Rim-Soil ux N/m 3.00 107 3.00 104 3.00 1011

21 Ballast Rim-Soil uy N/m 5.00 108 5.00 104 5.00 1011

22 Ballast Rim-Soil uz N/m 3.00 106 3.00 106 3.00 1011 4.76 106

23 Ballast Rim-Soil rx Nm/rad 1.00 101 1.00 101 1.00 106

24 Ballast Rim-Soil ry Nm/rad 1.00 101 1.00 101 1.00 1010 2.67 104

25 slab-sleeper ux N/m 5.00 106 5.00 104 5.00 1011

26 slab-sleeper uy N/m 5.00 106 1.58 105 5.00 1011 2.39 109

27 slab-sleeper uz N/m 5.00 107 5.00 105 5.00 1011

28 slab-sleeper rx Nm/rad 1.00 101 1.00 101 1.00 105

29 slab-sleeper ry Nm/rad 1.00 101 1.00 101 1.00 105 1.24 104

30 slab-sleeper rz Nm/rad 1.00 101 1.00 101 1.00 105

31 Rail Pad ux N/m 1.00 108 1.00 105 1.00 1010

32 Rail Pad uy N/m 1.00 108 1.00 105 1.00 1010

33 Rail Pad uz N/m 1.00 108 5.01 106 1.58 109

34 Rail Pad rx Nm/rad 1.00 105 1.00 101 1.00 105 2.80 104

35 Rail Pad ry Nm/rad 1.00 105 1.00 101 1.00 105 5.95 104

36 Rail Pad rz Nm/rad 1.00 105 1.00 101 1.00 105

Weimar Optimization and Stochastic Days 5.0 – November 20–21, 2008

15



Table 4: Comparison of the natural frequencies and MAC values of the four optimization runs

output parameter Simulation Measurement
run 1 run 2 run 3 run 4 mean cov mean cov

1. frequency 3.660 3.656 3.663 3.639 3.655 0.00294 3.68 0.00174
2. frequency 5.620 5.621 5.604 5.571 5.604 0.00415 5.24 0.00610
3. frequency 10.680 10.872 10.658 10.584 10.699 0.01144 9.36 0.01358
4. frequency 12.450 12.412 12.511 12.460 12.458 0.00329 13.17 0.00721
5. frequency 14.130 14.054 14.094 14.050 14.082 0.00267 13.71 0.01219
6. frequency 15.090 15.088 15.076 15.103 15.089 0.00071 15.09 0.01392
7. frequency 20.970 20.959 20.957 21.002 20.972 0.00100 20.98 0.01097
1. MAC 0.990 0.991 0.991 0.991 0.991 0.00030 0.991 -
2. MAC 0.981 0.984 0.980 0.979 0.981 0.00194 0.981 -
3. MAC 0.934 0.936 0.933 0.931 0.933 0.00229 0.933 -
4. MAC 0.957 0.956 0.959 0.959 0.958 0.00156 0.958 -
5. MAC 0.940 0.945 0.942 0.942 0.942 0.00233 0.942 -
6. MAC 0.882 0.884 0.871 0.871 0.877 0.00784 0.877 -
7. MAC 0.910 0.916 0.903 0.902 0.907 0.00729 0.907 -

Table 5: Results of the different optimization runs with same initial configuration

# Parameter run 1 run 2 run 3 run 4 mean cov
1 Young’s m. B25 + Ballast 3.17 1010 3.12 1010 3.26 1010 3.28 1010 3.21 1010 0.0229
3 Density B25 + Ballast 3.01 103 3.02 103 3.00 103 3.00 103 3.01 103 0.0039
4 Young’s m. B35 + Ballast 2.90 1010 2.90 1010 2.92 1010 3.06 1010 2.94 1010 0.0256
6 Density B35 + Ballast 3.70 103 3.69 103 3.58 103 3.66 103 3.66 103 0.0149

13 Shear m. Elast. 1 3.49 106 3.27 106 3.19 106 3.22 106 3.29 106 0.0415
14 Shear m. Elast. 2 2.23 106 1.98 106 1.95 106 1.88 106 2.01 106 0.0760
17 Ballast Gap uz 3.83 106 3.65 106 3.85 106 4.01 106 3.84 106 0.0386
19 Ballast Gap ry 1.27 108 1.32 108 1.11 108 9.83 107 1.17 108 0.1326
22 Ballast Rim-Soil uz 4.16 106 1.92 107 6.30 106 4.76 106 8.61 106 0.8282
24 Ballast Rim-Soil ry 1.00 101 4.17 101 2.84 105 2.67 104 7.77 104 1.7780
26 slab-sleeper uy 3.28 1011 8.78 106 5.27 109 2.39 109 8.39 1010 1.9393
29 slab-sleeper ry 4.44 104 2.33 104 4.95 104 1.24 104 3.24 104 0.5403
34 Rail Pad rx 2.78 104 2.78 104 2.78 104 2.80 104 2.78 104 0.0028
35 Rail Pad ry 1.67 104 3.79 104 3.91 103 5.95 104 2.95 104 0.8275
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