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Abstract 

The quality of the paint application in automotive industry depends on several 
process parameters. Thus, finding an optimal solution based on experimental 
configuration is tedious and time consuming. A first step to reduce the effort is to 
model the application within the framework of a simulation environment. This has 
been achieved by BMW in previous projects.  

However, the variation of influencing parameters is still based on manual 
work, although corresponding designs can be analyzed efficiently using CFD. 
Thus, obtaining an optimal configuration is not trivial, if possible at all, since the 
sensitivities of the parameters on the paint quality is unknown. 

In this study, we present an approach for the systematic variation of design pa-
rameters of the paint process to quantify their influence on the quality of the paint 
application. Using that information it is possible to reduce the design space by 
neglecting the parameters with low impact. Based on this design space we extend 
the procedure to predict an optimal set of input parameters for an optimal paint 
application. 
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1 Introduction 

The quality of the paint application is an important step during the manufacturing 
process of a car. This is not only due to the importance of the paint as corrosion 
protection but also due to marketing consideration, since the paint influences a 
client’s first impression on the automobile. Thus, it is necessary to distribute the 
paint in such a fashion that all important parts are covered with an ideally uniform 
coat thickness. This optimization task has been and still is carried out using trial-
and-error methods based on real hardware. Recently, BMW has developed a 
simulation approach to model the paint application process within the framework 
of ANSYS FLUENT and its add-on module DLS provided by IPA Stuttgart. It has 
been shown that this approach can predict the coat height distribution with an 
accuracy of a few percent [1]. Due to the efficiency of varying parameters in the 
CFD model and evaluating the corresponding results, BMW has been able to cut 
down the development time for the painting of a new car to approximately 50% 
compared to the purely experimental approach. 
 
To further enhance the simulation approach BMW decided to develop a procedure 
to systematically and automatically vary the process parameters and compute the 
corresponding simulation results. This goal is obtained by coupling the simulation 
approach with optiSLang, a tool for multidisciplinary optimization, sensitivity 
analysis and process integration. In this scenario, optiSLang defines the values of 
the process parameters, transfers them to the simulation model, starts the compu-
tation and retrieves a specific result from the simulation model. This procedure 
can be applied to automatically scan the design space to evaluate the sensitivities 
of the process parameters on the results, to find a parameter set such that the 
results become optimal or to analyze the robustness of a solution against a para-
meter scattering, which it usually occurs in the manufacturing reality. 
 

Figure 1: Paint application during manufacturing phase (left) and a representation 
of the simulation model of for the paint application on the hood (right). 
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2 Simulation of the paint application process 

The modeling within the simulation framework of the dynamic procedure of paint 
application consists of two principle steps. In the first step, a simulation using 
ANSYS CFD is employed to obtain a static paint distribution on the part to be 
painted, i.e. without moving the paint applicator. In a second step the static paint 
distribution information is integrated along the path of the applicator. In case of a 
considerable change of the positioning of the paint applicator in relation to the car 
body, the CFD simulation of the static paint distribution is repeated for this confi-
guration and the integration process can be continued using the new static paint 
distribution. It has been shown, that this approach predicts the paint thickness with 
high accuracy compared to measurements [1]. 
 
Obviously, the overall thickness distribution of paint on the car is directly related 
to the static paint distribution computed during the stationary CFD simulation, i.e. 
if the static paint distribution fulfils certain requirements, the integration path can 
be configured such that the thickness distribution almost uniform. Thus, for un-
derstanding the sensitivities of the process or to optimize the input parameters it is 
sufficient to consider the static CFD simulation only. 
 
However, in the scope of the static CFD simulations all the relevant physical 
effects have to be taken into account. Thus, it is mandatory to understand the real 
paint application process. It consists of injecting a paint film onto a rapidly rotat-
ing bell, which is located at a certain distance from the object to be painted. Due 
to rotational forces the paint film separates as paint droplets into the air. The size 
distribution of the resulting droplets depends on the rotational velocity of the bell, 
the injected mass flow and the material properties of the paint. To orient the drop-
lets paths towards the car body, the so called guiding air is produced by the 
various nozzles. Finally, to maximize the amount of paint impacting on the car 
body, an electrical field is installed which generates a force on the droplets to-
wards the car body. 
 
To model this complex situation in simulation software, the surface mesh of the 
paint bell and the painted part are oriented in a first step. Afterwards, the configu-
ration is meshed with a 3D grid. Based on this mesh the numerical model in 
ANSYS Fluent is set up. This accomplished by taking the droplet size distribution 
from measurements to define corresponding injections. The electrical field is 
solved as a set of scalar transport equation. After solving the flow problem, the 
amount mass per time unit of paint droplets on each surface element of the car 
body can be evaluated. This information is equivalent to the thickness growth and, 
therefore, to the coat thickness itself. The entire procedure is designed such that it 
runs fully automated based on ASCII input files in which all relevant information 
are specified, in particular, all those parameters which are subject for systematic 
variation. 
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3 Coupling the simulation module with optiSLang 

The coupling essentially means to allow optiSLang the modification of the input 
files with respect to the input parameters and the evaluation of the solver output 
files in which the performance of the design is quantified. Since all input data is 
specified in the ASCII input files anyway, the first step is straight forward. In this 
study we consider 5 input parameters: 
 

• Painting distance 
• Paint mass flow 
• Rotational velocity of the paint bell 
• Strength of the electrical field 
• Mass flow rate of the guiding air 

 
The second step relies on a proper strategy to determine the quality of the result-
ing paint thickness on the work piece, represented by one or more numerical 
value. To do so, the characteristics of an ideal paint distribution are specified and 
computed for each of the simulated paint results. Figure 2 shows the typical dis-
tribution of the static paint distribution as contour plot (left) and as chart 
representation over a line on the part (right). In contrast to the result of a real 
configuration, the ideal paint distribution is shaped like a cylinder with a fixed 
radius, as indicated by the green line in the chart representation. The most obvious 
differences from the real to the ideal distribution are the zero thickness in the 
outer region, the inclination of the shoulders and the constant level in the inner 
part. 
 
 Typical paint distribution 

  Ideal paint distribution 

 
Figure 2: Typical paint thickness distribution as contour representation (left) and 

as chart over the line on the part (right). 
 
In Figure 3, the 3 main paint thickness characteristics for performance quantifica-
tion of a design are shown. The first quantity is the so-called sp50-value. It is 
defined as the diameter of the paint at 50% of the maximum paint thickness. This 
value is optimal if it is equal to a target diameter. The second characteristic is the 
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difference of the maximum and the minimum value of the thickness (mu-diff). 
Obviously, this value is ideal if it is zero. The third characteristic (b-ratio) ex-
presses the inclination of the sides by taking the ratio of the diameters at different 
paint thickness heights. This value becomes optimal if it is 1. 
 
Above considerations are true for one slice over the painted part. Since a two-
dimensional distribution has to be quantified, the procedure is carried for 18 slic-
es, incrementally rotated by 10 degrees around the centre point. An averaging 
technique over all analyzed slices yields a representative value for each of the 
paint characteristics. 
 

 
Figure 3: Paint thickness characteristics to quantify the performance of the design. 
 
Besides the three paint thickness characteristics, the painting efficiency is meas-
ured. This quantity (awg) is defined by the ratio of the injected paint mass to the 
deposited mass on the part. It is optimal if 1. 
 

4 Sensitivity analysis of process parameters 

A sensitivity analysis is recommended as a preparation of optimization tasks. 
Sensitivity analysis is used to scan the design space by varying design optimiza-
tion parameters within upper and lower bounds. Either systematic sampling 
methods, so called Design of Experiment (DoE) schemes, can be applied to gen-
erate designs, or stochastic sampling methods (Plain Monte Carlo, Latin 
Hypercube Sampling) can be used. Stochastic sampling methods are recommend-
ed for most engineering problems with multiple parameters in order to apply 
statistic post processing. For keeping the number of design evaluations small, 
Latin Hypercube Sampling is the stochastic sampling method of choice. The 
following results are obtained by a global sensitivity analysis [2]: 
 

• Global sensitivities (which optimization parameter influences which re-
sponse?) by correlation analysis 

• Estimation of variation of the responses based on the defined design space 
• Identification of important input parameters and possible reduction of the 

design space dimension for optimization 
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• Better understanding of the optimization problem, detecting optimization 
potential and extracting start designs for optimization 

 
Setting up the sensitivity analysis requires the definition of the design parameter 
space with the corresponding upper and lower bounds. The process parameters 
paint mass and rotational speed have been defined as discrete optimization para-
meters, each with a corresponding list of discrete values. Possible combinations 
between these two discrete parameters were generated by means of a list of condi-
tional dependencies. The remaining optimization parameters painting distance, 
potential and steering air were defined as continuous optimization parameters. 
Table 1 gives an overview about the parameters and the corresponding bounds. 
 
Parameter Type Reference Lower bound Upper bound 

Paint mass discrete 200 150 400 

Rotational speed discrete 50 40 60 

Painting distance continuous 300 250 350 

Potential continuous -75000 -90000 -70000 

Steering air continuous 260.93 212 309 

Table 1: Definition of optimization parameters. 
 
For the sensitivity analysis of the process parameters 50 design realizations have 
been created using Latin Hypercube Sampling. For each design all 5 optimization 
parameters have been varied by optiSLang. After all designs have been calculated, 
it is possible to apply statistical methods in order to identify sensitivities between 
design parameters and evaluation criteria. 
 
An important result of the sensitivity analysis is the estimation of response varia-
tion. Basic statistical measures like minimum, maximum, mean and standard 
deviation can be determined. This gives valuable information about potential 
design improvements and is helpful for specifying targets for the optimization. 
 
The coefficient of determination (CoD) is a suitable statistical value to quantify, 
how much of the variation of a response can be explained by a relation to the 
input parameters. Values for the CoD vary between 0 and 100 % and are calcu-
lated for linear, quadratic and monotonic non-linear regression models. The 
coefficient of important (CoI) quantifies the influence of a single input parameter 
on a chosen response [3]. Figure 4 illustrates parameter sensitivities of the 5 
process parameters on the evaluation criterion mu_diff applying the CoI as impor-
tance measure. 
 
The analysis of correlation is used to describe the pair wise relation between 
design parameters and responses. A correlation coefficient is calculated to meas-
ure the strength of the relationship between two variables. It is recommended to 
test for linear, quadratic and monotonic non-linear correlations. Figure 5 shows 
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the relation between the design parameter paint mass and the response mu_diff, 
where every point in the plot represents a calculated design. 
 

  
Figure 4: Parameter sensitivities for the 
difference between the maximum and 

minimum value of the thickness 
(mu_diff). 

Figure 5: Anthill plot of the relation 
between the optimization parameter 

paint mass and the evaluation criterion 
mu_diff. 

 
Besides parameter sensitivities for different responses, parameter ranges which 
lead to numerical instabilities or insufficient convergence of the simulation result 
can be easily identified. In the present study an output flag was introduced which 
should be 0 if the simulation was finished successfully and 1 otherwise. A combi-
nation of paint mass and steering air could be identified as the source of 
instability. Figure 6 shows the infeasible parameter space in a 3D anthill plot. 
 

 
Figure 6: Infeasible design region (red) as a combination of paint mass and  

steering air. 
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5 Optimization of the process parameters 

The optimization of parameters of a system requires the definition of an objective 
function. This function is a sum of weighted terms and results in a single scalar 
value. Each term may contain arbitrary mathematical expressions and responses. 
The optimizer tries to minimize the value of the objective function. 
 
In order to formulate an objective function for the optimization of paint distribu-
tion it is necessary to transfer existing subjective evaluation criteria into numerical 
measures. The terms of the objective function may then be formulated as absolute 
values of the difference between the simulation result and the ideal thickness 
distribution. Because this ideal distribution cannot be reached exactly, there will 
always be a deviation of the simulation result. The absolute values of these devia-
tions are unknown in advance but will significantly influence the convergence 
behavior of the optimization. Therefore it is recommended to introduce scale 
factors for the individual objective terms. In the present case, the scale factors 
were determined as the reciprocal of the corresponding expected value. This 
implies that the scaled term becomes 1.0 if the optimization reaches the corres-
ponding expected value. The specification of the target values requires a 
comprehensive knowledge of the system and should be well-considered as it 
influences the optimization result. 
 
The formulation of the objective function can be tested on the designs of the 
sensitivity analysis. A revaluation of the existing 50 designs with an extended 
problem specification was performed. The revaluation results in a ranking of the 
designs according to their objective function value. The best design with the 
smallest objective value should match the best design from the subjective view. 
Figure 7 shows the thickness distribution in a sectional view for all designs from 
the sensitivity analysis with the best design from the revaluation highlighted red. 
 

 
Figure 7: Thickness distribution of the designs from the sensitivity analysis with 

the best design (red) according to the objective function formulation. 
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For the execution of the optimization task, a response surface based method was 
chosen. The response surface methodology (RSM) is used to approximate res-
ponses in a multi-dimensional space. For calculating the response surface as a 
surrogate model of the real response, both appropriate approximation functions 
and support points are necessary. Systematic sampling methods are applied to 
generate optimal support points for the approximation function. Gradient-based 
optimization methods or evolutionary algorithms can be used for finding optima 
of the surrogate model. 
 
The quality of results depends on the accuracy of the approximation, which is 
influenced by the number of support points, the kind of approximation function 
used and the design space itself. The accuracy of the approximation increases if 
the range of the approximated sub region is decreased. This principle is used for 
the adaptive response surface method (ARSM) where the approximation of res-
ponses is calculated for a sub region of the design space. By adaptively zooming 
and shifting this sub region, the quality of the approximation is gradually in-
creased. 
 
The actual optimization was performed for the three continuous process parame-
ters painting distance, potential and steering air. The discrete parameters paint 
mass and rotational speed were set as constant with the values taken from the best 
design of the sensitivity analysis. D-optimal sampling in combination with a linear 
approximation of responses was chosen as settings for the ARSM algorithm. The 
number of iterations was limited to 10 which results in a total number of 71 de-
signs. This enables the computational engineer to perform such an optimization 
task in a reasonable time slot. Starting from the best design of the sensitivity 
analysis the optimization showed fast convergence of the parameter to optimal 
values. Figures 8 and 9 illustrate the parameter convergence of the steering air and 
the painting distance over the number of iterations. The results of the optimization 
regarding the evaluation criteria of the painting process meet the requirements of 
an optimal painting result. Especially for the criteria diameter of the paint and 
painting efficiency, almost ideal results could be achieved. Figure 10 contains the 
optimized process parameters of the best design and figure 11 shows the corres-
ponding values of the objective function and terms. 
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Figure 8: Parameter convergence and 
shrinking of parameter bounds over the 
number of iterations for the steering air. 

Figure 9: Parameter convergence and 
shrinking of parameter bounds over the 

number of iterations for the painting 
distance. 

 

Figure 10: Optimized process parame-
ters of the best design. 

Figure 11: Objective function and terms 
of the best design. 

 

6 Summary and conclusions 

In this study, the numerical analysis of the spray paint application using ANSYS 
CFD has been extended to automatically vary input parameters and analyze the 
performance of the corresponding design with respect to user-defined objectives. 
This has been achieved by coupling the simulation module with optiSLang, a tool 
for multidisciplinary optimization, sensitivity analysis and process integration. 
 
With the help of this approach the simulation task is not only automated, but also 
extended to yield additional information which would be tedious to obtain with 
the manual simulation approach. Beside others, the additional information in-
cludes the sensitivities of the input parameters with respect to the objective 
functions and the optimal settings of the process parameters for the corresponding 
paint application. The first enhances the basic knowledge of the paint application 
procedure, while the latter provides directly one of the key results of a simulation 
driven process development. 
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