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Abstract

Within the design development phases the Design for Six Sigma concept opti-
mizes a design such that the products conform to Six Sigma quality. Which means
that robustness and reliability are explicit optimization goals even with variations
e.g. in manufacturing, design configuration and environment. The application of
the reliability- and variance-based robust design optimization results in optimized
designs such that they are insensitive to uncertainties up to a six sigma safety level.
In this paper an efficient iterative decoupled loop approach is provided for reducing
the necessary number of design evaluations. This is exemplary applied to a CAD
and CAE parameter-based robust design optimization of an axial turbine, including
manufacturing tolerances based on random field modeling.

The probabilistic and optimization tasks are performed with the optiSLang, SoS
and SLang software packages. Whereby, the CAE integration is realized by the
ANSYS Workbench environment and optiPLug. In addition, the ANSYS Mechan-
ical and CFD software offers a comprehensive solution for structural, thermal and
fluid analysis. The software package also includes solutions for both direct and se-
quentially coupled physics problems including direct coupled-field elements and the
ANSYS multi-field solver for supported physics, which is very efficient for tolerance
interpolation of measurement data to different finite element meshes.
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1 Introduction
A large number of problems in manufacturing processes, production planning, finance and
engineering design require an understanding of potential sources of variations and quan-
tification of the effect of variations on product behaviour and performance. Traditionally,
in engineering problems uncertainties have been formulated only through coarse safety
factors. Such methods often lead to overdesigned products. Otherwise, the application of
the deterministic optimization often results in designs with high imperfection sensitivities
(oversensitivity designs) and non-robust and unsafe (underdesigned products) behaviour
because the deterministic optimal design is frequently pushed to the design space bound-
ary. The design properties have no room for tolerances or uncertainties.

Because of that, an integration of the assessment of robustness, reliability and safety
into the optimization is necessary. Within the robust design optimization the design
parameters can be random variables themselves and in addition the objective and the
constraint functions can be random types. Using the robust design optimization we obtain
robust optimized designs such that they are insensitive to uncertainties within a safety
level of two sigma. The reliability-based optimization includes the failure probability as
constraint condition or as term of the objective function themselves. So we obtain designs
with minimal failure probability applicable for all safety levels up to 6 sigma.

There exist physical or geometrical quantities which vary randomly along the geometry
of a structure, such as distributed loads, Young’s modulus, material thickness etc. The
spatial correlation of such parameters can be taken into account by modeling them as
random field.

Computational fluid dynamics (CFD) is an engineering method in which flow fields
and other physics are calculated in detail for an application of interest. ANSYS uses a
multidisciplinary approach to simulation in which fluid flow models integrate seamlessly
with other types of physics simulation technologies. The CFD, or fluids simulation, re-
sults can be used as part of a Simulation Driven Product Development (SDPD) process
to illustrate how a product or process operates, to troubleshoot problems, to optimize
performance and to design new products.

2 Successive robust design optimization
2.1 Robust design optimization
Design for Six Sigma is a concept to optimize the design such that the parts conform
with six sigma quality, i.e. quality and reliability are explicit optimization goals. Robust
design is often synonymous to “Design for Six Sigma” or “reliability-based optimization”.
The possible sigma levels start at 1 to 2 σ (variance-based robust design optimization)
and go up to 6 σ (reliability-based robust design optimization) (Koch et al. (2004)), as
shown in Table 1.

Structural designs within the sigma level ≤ ±2σ are characterized as “robust design”.
Therefore, the objective of the robust design optimization (e.g. Hwang et al. (2001);
Ben-Tal and Nemirovski (2002); Doltsinis and Kang (2004)) is to find a design with a
minimal variance of the scattering model responses around the mean values of the design
parameters (see Byrne and Taguchi (1987); Phadke (1989)).
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Sigma Percent Probability of
level variation failure P (F)
1 σ 84.134474607 1.59 · 10−01

1.5 σ 93.319279873 6.68 · 10−02

2 σ 97.724986805 2.28 · 10−02

2.5 σ 99.379033467 6.21 · 10−03

3 σ 99.865010197 1.35 · 10−03

3.5 σ 99.976737092 2.33 · 10−04

4 σ 99.996832876 3.17 · 10−05

4.5 σ 99.999660233 3.40 · 10−06

5 σ 99.999971335 2.87 · 10−07

5.5 σ 99.999998101 1.90 · 10−08

6 σ 99.999999901 9.87 · 10−10

Figure 1: Sigma levels depending on the
variation of the normal distribution corre-
spond with defects per million and associ-
ated probability of failure P (F) (assumption:
normal distribution for all important random
responses).
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Figure 2: Normal distribution fX(x)
with lower and upper specification limit
on 2σ and 6σ level. Robust design (RD)
and safety design (SD) (≥ ±2σ) depend-
ing on chosen limit state function g(X) ≤
0, e.g. stress limit state.
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Figure 3: The state function g(x) of a numerical model is given implicitly, e.g. is result
of a finite element analysis depending on several design responses. The failure condition
leads to a unknown deterministic limit state function g(x) = 0, where fX(x) is the joint
probability density function.
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In the reliability-based robust design optimization, the optimization problem can be
enhanced by additional stochastic restrictions ensuring that prescribed probabilities of
failure can not be exceeded, for example P (F) ≤ 3.4 ·10−6. Using the normal distribution
assumption a probability of 3.4 out of 1 million is achieved when the performance target
is 4.5 σ away from the mean value (short term). Of course, this assumption can be only
used as a rough estimation of the safety level and we have to calculate the probabilities
of failure using the reliability analysis, as shown e.g. in Roos et al. (2006). However, the
optimized design which meets these conditions is often called as “Six Sigma Design” or
“safety design”. Usually, the robust design optimization problem

f(d1, d2, . . . dnd , σ
2
X1 , σ

2
X2 , . . . σ

2
Xnr

, P (F))→ min
gk(d1, d2, . . . dnd) = 0; k = 1,me
hl(d1, d2, . . . dnd) ≥ 0; l = 1,mu

di ∈ [dl, du] ⊂ Rnd

dl ≤ di ≤ du

di = E[Xi]

(1)

with nr random parameters X and nd means of the design parameters d = E[X] is
enhanced by additional mg random restrictions∫

nr. . .
∫

gj(x)≤0

fX(x)dx− P (X : gj(X) ≤ 0) ≤ 0; j = 1,mg (2)

with the joint probability density function of the basic random variables fX(x) and mg
limit state functions gj(x) ≤ 0 (see Figure 3) and the probability of failure P (F)

P (F) =
∫
nr. . .
∫

gj(x)≤0

fX(x)dx (3)

and the variances
σ2
Xi

= 1
M − 1

M∑
k=1

(
xki − µXi

)2

is solved as a combination of a deterministic optimization in the design space and a
stochastic analysis in the space of the random influences for every deterministic design.

This procedure leads in general to an inefficient double loop with a large number of
design evaluations, e.g. finite element analysis. Furthermore, in real case applications of
the virtual prototyping process, it is not always possible to reduce the complexity of the
physical models and to obtain numerical models which can be solved quickly. Usually,
every single numerical simulation takes hours or even days. Although the progresses in
numerical methods and high performance computing, in such cases, it is not possible
to explore various model configurations. An overview about advanced methods to solve
robust design optimization problems can be found e.g. in Roos (2008). However, their use
is restricted to problems with few random and optimization variables.

2.2 Successive robust design optimization
The most general way for reducing the required number of design evaluations is the appli-
cation of an iterative decoupled loop approach (see e.g. Chen et al. 2003) in combination
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Figure 4: Basic concept of a successive robust design optimization.

with identification of the most significant random and design variables using the multi-
variate statistic within the sensitivity analysis or robustness evaluation. According the
flow diagram in Figure 4, in a first step the sensitivity analysis can be used to prove the
predictive capability of the simulation model and to identify the most important design
parameters to solve the deterministic optimization problem, efficiently. After that, it is
necessary to evaluate robustness and safety of the design at the current deterministic
optimum.

Afterwards the deterministic formulation of the constraints and the objectives is to
modify according to the achieved robustness, reliability or sigma level and the determin-
istic optimization is to be repeated until the requirements in terms of robustness and
safety are fulfilled. Although, the optimization and reliability analysis runs mostly effi-
cient in the space of the current significant parameters. So every size of problem definition
(number of design and random parameters) is solvable for all kind of robustness values in
combination with the consideration of the failure probability within all sigma levels. Fur-
thermore, this proceeding allows highly flexible user interactions at every iteration step.
At any time, the user can adapt the optimization problem with respect to the optimiza-
tion goals, constraints and model configurations and can add additional requirements as
a result of the advanced virtual design processes. However, for a global variance-based
robustness analysis (see e.g. Bucher 2007) it is recommended to scan the design space
using stochastic sampling methods and to estimate the sensitivity using the multivariate
statistic based on surrogate models (for detailed reading see DYN 2009).

Results of a global variance-based sensitivity study are the most significant parameters
of the optimization or random variables due to important model responses. So, it is
possible to identify the sub domains and very efficient adaptive approximation methods
can be used for optimization and reliability analysis (Roos and Ochsenfahrt 2009).
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3 Random fields
3.1 Stochastic models
There exist three different views on random fluctuations of system properties:

• Single random variables X provide a stochastic model for the natural fluctuation of
single parameters, such as CAD model parameters, material constants, or process
parameters. They are characterized by a distribution type and statistical moments
(e.g., the mean value µX and variance σ2

X). Random variables may be pairwise
correlated. Pearson’s correlation coefficient is a statistical measure for a supposed
linear relationship between two random variables. A random vector X is a com-
pact mathematical notation for a set of several, possibly correlated, variables. The
statistical moments are then pooled in the mean vector µµµX and covariance matrix
CXX .

• A random fluctuation over time is described as random process X(t). A typical
application is a transient loading. Here, the value of the quantity is a random
variable at each observed point in time. The values at different time points may be,
again, mutually correlated. For the special case of white noise all time points are
independent from all others.

• In order to characterize and model random fluctuations over space, the methodology
of random fields is applied. Any manufacturing process (e.g., metal forming, casting)
causes deviations from the design geometry or a scatter of material properties within
the structure. These cannot be modelled in a meaningful way by single variables
like CAD parameters. Hence modelling and simulation of random fields will be
described briefly in the following.

The stochastic analysis software SLang (– the Structural Language) includes several meth-
ods solving all stochastic models, including random fields and random processes. Cur-
rently, optiSLang (– the optimizing Structural Language) supports methods to solve non-
linear optimization and to analyse random variables only. In addition, the SoS (– Statistics
on Structures) add-on tool to optiSLang provides methods to solve random fields.

3.2 Random fields
Regard a local vector r ∈ RStr. pointing to a location in space, the domain RStr. is limited
by the structure observed in an application. A random field is a random function X(r),
i.e. the value of X at any point r is itself a random variable, as shown in Figure 5. As
any random variable, it is characterized by a probability distribution function, which can
be parameterized by distribution type and stochastic moments. For random fields, the
moments become functions over space as well. In particular

µX(r) = E[X(r)] =
+∞∫
−∞

xfX(r, x) dx (4)
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Figure 5: Random fluctuation of any property
H(r) = X(r) over space, e.g. load (wind field), man-
ufacturing tolerances (geometry, material), etc.

Figure 6: Correlation function
and correlation length of the ran-
dom fluctuation H(r).

denotes the mean function, and

CXX(r1, r2) = E
[(
X(r1)− µX(r1)

)
·
(
X(r2)− µX(r2)

)]
=

+∞∫
−∞

+∞∫
−∞

x1x2fX(r1, r2, x1, x2) dx1 dx2 − µX(r1)µX(r2)
(5)

the auto-covariance function, with E[.] being the expected value operation. If the auto-
covariance function is normalized as ρ(r1, r2) = CXX(r1, r2)/CXX(r1 = r2), one obtains
the spatial function of Pearson’s correlation coefficients, which indicates the amount of
linear dependency between the random properties at two locations. The so-called corre-
lation length LXX , which is actually the centre of gravity of the correlation function, is a
typical characteristic of the correlation coefficient function, as shown in Figure 6. It has
to be estimated from manufacturing processes, natural scatter of material properties, etc.

3.3 Modelling
For computational analyses, a random field has to be discretized. Typically, the nodes of
the underlying Finite Element model are used as supports for displacement or coordinate
fields, element mid points or integration points for material properties, stresses or strains.
If measurements provide the data base for a random field model, a separate mesh of
support points defines the discretization. After simulation, realizations of the random
field then have to be mapped to the structural model by suitable interpolation for further
analysis of the such generated imperfect structures.

Discretization leads to a finite set of random variables X, characterized by a mean
vector and a covariance matrix CXX . From now on, Gaussian random fields with zero
mean vector are considered only. Then the covariance matrix suffices for the complete
characterization of the random variables set. For the generation of realizations of the
random field by Monte Carlo methods, independent random variables are required. They
can be obtained by the expansion shown in the following. The procedure offers also the
opportunity to assess given spatial data, identify the most relevant variables (with respect
to criteria explained later) and reduce the problem dimension.

The random field is expanded by a series of deterministic shape functions scaled by
random amplitudes. If the shape functions are orthogonal, it can be shown that the ran-
dom amplitudes are independent. For this purpose, the covariance matrix is decomposed
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by eigenvalue analysis:
ΨΨΨTCXXΨΨΨ = diag{λi} (6)

Therein, ΨΨΨ is the matrix of eigenvectors of CXX stored columnwise. The eigenvectors
form the set of orthogonal shape functions. The random amplitudes are defined as

Yi : N
(
0,
√
λi

)
(7)

The Karhunen-Loève expansion of the random field, shown in Papoulis (1991); Ghanem
and Spanos (1991), in matrix notation reads

X = ΨΨΨ Y (8)

and relates the generalized variables Y generated by random sampling to the physically
meaningful space spanned by X(r). Typical shape functions are shown in the context of
the application example, Figures 51 ff.

The eigenvalues of the covariance matrix are usually stored sorted by magnitude in
descending order. Because of eq. (7), this fact delivers a criterion for truncating the
Karhunen-Loève series. Each eigenvalue considered contributes a part to the total variance
of the random field which is the sum of diagonal elements of the covariance matrix.
The quality of approximation of the random field is expressed by the variability fraction
(Brenner 1995)

Q =

n∑
i=1

σ2
Yi

trace
(
CXX

) ; 0 ≤ Q ≤ 1 (9)

The number n of the random variables considered has to be adjusted before the simulation
in order to reach a sufficient quality, e.g. Q > 0.9. A vast reduction of the problem
dimension is possible that way. This opens the random field modelling to subsequent
robustness and reliability analyses by advanced methods such as Importance Sampling or
Adaptive Response Surface Method, which are typically sensitive towards dimension.

3.4 Relevance assessment of random field variables
Even if a truncated series expansion of a random field represents a large amount of the total
variance, as computed by eq. (9), the random field representation may be not optimal
for a reliability analysis, because it lacks those variables which contribute most to the
performance of the application, or the random field model may still incorporate a too
large set of variables. The dimension can be further reduced by selecting those random
variables which contribute most significantly to the structural performance. Although a
direct physical relation between random amplitudes, or their respective shape functions,
and the performance criterion is difficult to find, a phenomelogical assessment is easily
possible by methods of robustness assessment.

The Coefficient of Importance (CoI), see DYN (2009), allows a ranking of input vari-
ables by their contribution to the variance of the performance. The influence typically
decreases strongly, therefore this gives a criterion for selection of input variables, which,
in contrast to the above (eq. 9), takes into account the statistical relation between input
and output. This selection has been shown to be superior to the simple input-related
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criterion in reliability analyses of stability problems in Bayer et al. (2007); Bayer and
Roos (2009).

In the application presented here, the performance function is approximated by the
Metamodel of Optimal Prognosis – MOP – ((DYN 2009)) for the purpose of reliability
analysis (sect. 5.8.3 ff.). The Coefficient of Prognosis (CoP) applied therefore is evalu-
ated by computing mean square differences of a subset of supports of the metamodel and
the directly computed performance. Hence the metamodel is based upon the input vari-
ables with the highest CoPs, among those operation parameters, material parameters and
random amplitudes of the imperfect turbine blade surface. Also this selection criterion
considers input-output relations.

4 Computational fluid dynamics and fluid structure
interaction

4.1 Fluid structure interaction
For the simulation of many industrial applications multiple physical effects have to be
taken into account. An important application is the interaction between the dynamics of
a fluid flow and the structure of a solid body, commonly referred to as Fluid Structure
Interaction (FSI). One kind of interaction is the influence of the fluid pressure force or
the fluid heat flow on the attached structure. In addition, the structural deformation
can have a reverse impact on the flow, e.g. by imposing the fluctuating motion based on
the structural eigenmodes for the flow computation. Another example for a strong inter-
action between flow and structure is aero-elasticity which typically requires an implicit
solver coupling. Depending on the application different solution strategies and solver
coupling methods may be required. ANSYS Workbench provides an integrated simula-
tion environment which is capable to compute a variety of field coupling scenarios. For
FSI applications the ANSYS finite element solver is used for the structural analysis and
coupled with the ANSYS CFX flow solver, which is used for the fluid analysis. The in-
dividual solver capabilities to predict the different effects are combined in a multi-field
simulation environment, and the way of coupling between the solvers can be adjusted to
the simulation problem. Communication and data transfer is handled consistently inside
ANSYS Workbench.

4.2 Process integration
Typically, there are two ways for integration of arbitrary external CAD and CAE pro-
grams. First, reading and writing of parametric data to and from ASCII input and output
files, is the most general way to doing integration of any engineering processes. The second
way provides CAD-based parametrization using bidirectional interfaces to binary input
and output parameters.

Therefore exit several optiSLang interfaces, e.g. for ANSYS, ABAQUS, CATIA and
EXCEL. Within the application example we used the optiPLug interface to ANSYS Work-
bench, as shown in Figure 7. ANSYS Workbench reads and writes binary data to and
from many CAD software in order to explore a wide range of responses. Within Work-
bench all input and output parameters are created. The optiPLug interface creates an
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Figure 7: Definition of parameters and optimization task and process integration of
arbitrary CAD and CAE tools in the context of optimization and stochastic analysis.
Binary-based CAE parameter definition within the ANSYS Workbench environment and
using the optiPLug interface of optiSLang.

optiSLang project with predefined parameter descriptions and writes and reads the cur-
rent parameters and responses. Furthermore, optiSLang starts Workbench as a batch
process, if necessary using parallel distribution of several Workbench processes.

5 Application example
5.1 Design for six sigma of the turbine engine
The Figure 8 shows a typical turbine engine used in power plants or aircraft engines.
Since the engineering of turbo machinery the improvement of specific physical behavior,
especially the efficiency, is one of the key issues. In conventional engineering the design is
improved by evaluating design response and making design changes based on experience,
intuition or guess. Due to the introduction of virtual prototyping the turbo machinery
analysis have a very high degree of complexity and desired improvements are hard to
reach with conventional trial and error procedure. A modern approach to search for better
designs or to compute the ’best’ design has to introduce all available engineering know
how and has to automate a multidisciplinary optimization process. An other important
issue is the robustness of a turbo machinery, while operating an constant value of several
parameter is needed, since the geometry is not manufactured perfect and some other
parameter will vary in the real approach.

To prove the reliability of the initial design we used the robustness analysis to estimate
the sigma level. And the robust design optimization is used to increase the efficiency,
power and reliability to get an optimized six sigma design.
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Figure 8: Axial gas turbine. Figure 9: ANSYS DesignModeler geome-
try model of the passage of one stage of an
axial gas turbine, used for CHT and FEA.

Figure 10: Result of the CHT calculation
with temperature distribution of the rotor
blade (vector plot of the gas velocity in
mid-span).

Figure 11: Result of the CHT calculation
(vector plot of the gas velocity in mid-span
and stream lines).
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Figure 12: Displacements of the FEA of
the rotor blade.

Figure 13: Mapped temperature field, as
a result of CHT (see Pictures 10), to the
FEA mesh of the rotor blade.

Figure 14: Equivalent von Mises stress
distribution of the FEA of the rotor blade.
The maximal stress is located near the de-
sign parameter Rotor blend radius.

Figure 15: Design parameters: Blade an-
gle (Guide vane), Blade angle (Shroud pro-
file) and Blade angle (Hub profile).
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Table 1: Performance relevant output parameters of
the model responses, target function definition and con-
strains or limit states, respectively.

Response parameters, weighted target function p(x),
constraint functions (limit state conditions) g(x)

for robustness and reliability analysis.
Description/Symbol Name Initial value Unit

1 Total tempera-
ture ratio ΘT =
Tt,Inlet/Tt,outlet

Ttratio 1.1158

2 Torque Mp myTorque -576.75 Nm
3 Isentropic efficiency

η = f(ΘT ,Πp)
myeta 0.71645

4 Total pressure ratio
Πp = pt,Inlet/pt,outlet

ptratio 1.6738

5 Power at rotor P myPower 1.2079 · 106 W
6 Maximal temperature Temperature Maximum 688.017 ◦C
7 Maximal total defor-

mation
Total Deformation Maximum 6.3588 · 10−4 m

8 Maximal v. Mises
stress σmax

Equivalent Stress Maximum 2.1865 · 109 Pa

9 Thermal conductivity Thermal Conductivity 60.5 W/m/◦C
10 Mass flow rate ṁ =

f(Πp, αGV)
myMassFlow 11.5655 kg/s

Objective function
p(x) (see Equ. 10)

myetaObj 1.25

Constrains for stresses
1 g1(x) = σmax ≤ 2.8 ·109 Pa

for efficiency
2 g2(x) = η ≥ 0.795

and power
3 g3(x) = P ≥ 1 · 106 W

Table 2: Design parameters.

Upper and lower bounds xu, xl of the optimization parameters.
Description Name Symbol xl xu Unit

1 Rotational velocity
of the rotor

myomega Ω -2400 -1600 rad/s

2 Blade angle (Hub
profile)

DS hub angle αHub -1.0 1.0 ◦

3 Blade angle
(Shroud profile)

DS shroud angle αShroud -3.5 3.5 ◦

continued on next page ...
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Description Name Symbol E(X) σX Unit
4 Blade angle (Guide

vane)
DS gv angle αGV -12.0 3.0 ◦

5 Total temperature
inlet

Ttin Tt,Inlet 995 1005 K

6 Total pressure in-
let

ptin pt,Inlet 295000 305000 Pa

7 Rotor blend radius DS FBlendRotor r 0.9 1.1 mm

5.2 Model description, design parameters, objective function
and limit states

The Figure 9 shows the CAD model of the turbine blades. The geometry of the rotor
is defined by the hub and shroud profile of the initial design. Both, hub and shroud,
can be rotated around an axis, Fig 15. The blade shape is finally given by staggering the
given/modified profiles. The guide vane can also be rotated about an axis, while the shape
remains constant. In this sense three parameters are important for the blade design. The
maximal stress is assumed at the blend of the rotor blade, thus the radius is an additional
parameter. The boundary conditions for the fluid flow are the rotational velocity of the
rotor, total pressure pt and total temperature Tt at the inlet and static pressure ps at the
outlet. Additionally the influence of all material properties is to identified.

The performance-relevant response parameters are compiled in the Table 1. The
target of the optimization process is to maximize the efficiency η and power P of the
turbine engine with respect to a limitation of the maximal v. Mises stress σmax. Often,
multidisciplinary optimization problems are governed by multiple objectives. Then part
of the solution strategy of a multidisciplinary optimization problem is the definition or
selection of the best compromise objective function from a set of multiple and frequently
conflicting objectives.

Depending on the optimization strategy, sometimes only the dominant objective should
be defined as an objective, and the other objectives should be defined as constraints.
But more often, the compromise (or preference) objective function will be defined as a
combination

p(fi(x1, x2, . . . xnd))→ min

of i = 1, ...,m multiple weighted objectives and constrains. In this case, the definition of
the priority (or weight) attached to each objective is not a trivial task. Moreover, there
may be no clearly defined decision base which objectives are more or less important. So,
the optimization is sometimes an iterative search of the best weights for the objectives.
In addition to the weights, it is recommended to scale the objective function terms

p(fi(x1, x2, . . . xnd)) =
m∑
i=1

Wi

(
fi(x)
Γi

)

and applied to this example

p(x) = 1.01− η
Γ1

+ 1
4

1
Γ2

(
1− P

2 · 106

)
(10)
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with the weights W1 = 1, W2 = 0.25 and normalization factors Γ1 = 0.28355, Γ2 = 0.396
for normalization according to the start design. The nd = 7 design geometry and process
parameters x of the optimization problem are compiled in the Table 2 with the upper
and lower bounds xui , xli. Whereby the feasible design area is restricted by the defined
constrains, as shown in Table 1.

5.3 Structural, thermal and fluid analysis
ANSYS Workbench is an adaptable and modular CAE environment which allows different
tasks for many types of simulation including FSI. It serves as the integration platform
for all ANSYS tools, but can also be used for in-house codes and third party software.
The main goal of ANSYS Workbench is to provide a complete platform for upfront sim-
ulation which then drives product development. It allows standard components analyses
but also the simulation of complete systems which in many cases requires multi-physics
capabilities. The underlying data structures and the unified user interface allow for new
and unique CAE simulation capabilities on the same geometry model. In that respect
ANSYS Workbench makes virtual prototyping become reality. Fig. 7 shows schematically
existing tools of ANSYS Workbench, which have a relevance for an FSI simulation. This
Workbench infra stucture is used to include the data of the Random Field, generated by
SoS, into the ANSYS structural solver and ANSYS CFX. Finally, the environment can
be customized depending on the individual needs of an application. ANSYS Workbench
provides a consistent infrastructure which allows to use the same geometry model for
different types of simulation and to exchange data between different solvers internally.
This is the basis for an efficient and reliable FSI simulation. Depending on the type of
application different coupling strategies may be required. In principle, any type of solver
coupling can be grouped into a sequential or a simultaneous coupling. Sequential coupling
is defined as a simulation where individual solver runs are carried out in sequential order.
The main advantage of a sequentially coupled system is that the computational effort is
of the same order as for the single physics application. The data is transferred either from
the structural analysis to the flow solver or in the opposite direction as shown schemat-
ically in Fig. 7. The solution of one field is used as an initial condition or a boundary
condition for the subsequent simulation. If during the simulation the data exchange is
performed only once, i.e. there is only a one way impact from the structural analysis
on CFD or vice-versa, then the process is termed a one-way coupling. In this case the
influence of the structural deformations on the fluid flow can be negled, i.e. we have a
one-way coupling.

5.4 Evaluate the robustness of the initial design
The robustness evaluation is used to estimate the robustness and safety level (see Ta-
ble 1) of the initial design introducing uncertainties of geometry, material, process and
environment, as shown in Table 3.
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Table 3: Uncertainties of geometry, material, process
and environment

Random parameters with normal distribution type, mean value E(X)
and standard deviation σX

Description Name Symbol E(X) σX Unit
1 Rotational velocity

of the rotor
myomega Ω -2094.39 41.8878 rad/s

2 Blade angle (Hub
profile)

DS hub angle αHub 0.0 0.00674 ◦

3 Blade angle
(Shroud profile)

DS shroud angle αShroud 0.0 0.00357 ◦

4 Blade angle (Guide
vane)

DS gv angle αGV 0.0 0.1947 ◦

5 Total temperature
inlet

Ttin Tt,Inlet 1000 207 K

6 Total pressure in-
let

ptin pt,Inlet 300000 90007 Pa

7 Pressure outlet pout pout 87000 17407 Pa
8 Specific heat ca-

pacity at constant
pressure, air

myAirCP cp,a 1004.4 30.1327 J/kg/K

9 Specific gas con-
stant

myAirR R 287.102 8.6131 J/kg/K

10 Specific heat ca-
pacity, steel

mySteelCP cp,s 434 21.77 J/kg/K

11 Density of the steel
material

mySteelDensity ρ 7850 78.57 kg/m−3

12 Heat conductivity,
steel

mySteelLambbda λ 60.5 2.427 W/m/K

13 Rotor blend radius DS FBlendRotor r 1.0 0.027 mm
14 Youngs‘ modulus Youngs Modulus E 2 · 1011 6 · 109 Pa
15 Poissons ratio Poissons Ratio ν 0.3 0.17

The robustness evaluation is based on an optimized latin hypercube sampling pro-
cedure with N = 48 design evaluations with 2 failed designs. According the required
number of simulations

N ≥ 10
P (F)

the direct calculation of the failure probability is limited to P (F) ≥ 0.208 (0.815 σ). But
the statistic in terms of a “second moment representation” of the response parameters can
be explained by the N = 48 samples regarding the histogram of the response parameters.
Mean and standard deviation can be used to evaluate the sigma level

σL = g(X)− E[X]
σX

(11)

according the defined limit state conditions g(X) given in Table 1. Using the assumption
of normal distribution for all important random responses we obtain a rough estimation
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Limit state Sigma P (F) P (F)
condition level σL (Equ. 12) (PDF)
g1(x, σmax) 5.33σ 4.91 · 10−8 0.00
g2(x, η) 13.01σ 1.00a 1.00
g3(x, P ) 3.86σ 5.67 · 10−5 5.67 · 10−5

Figure 19: Sigma levels and associated prob-
ability of failure P (F) of the initial design (as-
sumption: normal distribution of the random
response) and estimated P (F) based on the
fitted probability density function (PDF).

aMean of η is located in the failure domain, so
the assigned probability means the probability of sur-
viving instead of the probability of failure which is
P (F) = 1− P (S)

of the probability levels

P (F) = P [X : g(X) ≤ 0] ≈ Φ−1(x : g(X) = 0) (12)

as shown in Figure 19. Figures 16 to 18 show the histograms of power P , efficiency η and
the maximal v. Mises stress σmax including the limit state conditions. It is recommended
to use the fitted distribution functions to estimate the failure probabilities within the
sigma levels 1 to 3. The failure probabilities according the safety levels between 3 and
6 are predictable using the reliability analysis. The estimation of the failure probability
using the distribution fits gives an unacceptable value of 5.67 · 10−5 for violating the
limit state condition regarding the power P and 100% for the efficiency η, particularly.
Therefore, in the following robust design optimization the feasible design space has to be
restricted to ensure an acceptable safety level.
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initial design

start population

Figure 20: Anthill plot of the N = 75 latin hypercube results of the sensitivity analysis
including the responses η, P and σmax of the initial design. The best designs are selected
as start population of the first evolutionary optimization step.

5.5 Sensitivity analysis of the initial design
The first most important step for a successful and efficient optimization procedure is to
analyse the global sensitivities of the design parameters of the initial design. Introducing
of lower and upper bounds of the design parameters, as shown in Table 2, an optimized
latin hypercube sampling with N=75 design evaluations in parallel gives the anthill plots
of all performance relevant response parameters η, P and σmax, as shown in Figure 20.

The matrix of the linear coefficients of correlation in Figure 21 shows only few input
parameters for each response which have a strong linear correlation. The matrix shows
only the statistical significant correlations greater than the statistical error of the simu-
lated correlation of the input parameters. For practical applications it is recommended
to prove the confidence intervals. These confidence levels Ip should perform the follow-
ing conditions: ρ ≥ 0.5: Ip ≤ 0.15, e.g. [−0.075; 0.075] and ρ ≥ 0.7: Ip ≤ 0.10, e.g.
[−0.05; 0.05]. Otherwise, the number of design evaluations has to be increased. In our
case, the confidence interval for correlation coefficients near |ρij| = 0.5 is [−0.06; 0.05] ac-
cording to a 95% significance level. Which means that 95 of N = 100 sensitivity analyses
would result in estimated correlation coefficients between 0.44 and 0.55. The confidence
levels of the coefficients of correlation |ρij| = 0.5 and 0.7 show the possibility to reduce the
necessary number of design evaluation for the next sensitivity or robustness evaluations.

The adjusted value of coefficient of determination R2
adj gives the amount of variance

that can explained by a linear or nonlinear regression model including all significant in-
put parameters and gives the optimization potential within the given design parameter
boundaries. Figures 22 to 26 show the coefficient of determination for the objective terms
η and P and the critical constraint σmax, depending on a linear regression model. An
important prediction value to explain the influence of a single input parameter l on a
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Figure 21: Matrix of the linear correlation (including the confidence levels) between
design parameters, responses and objectives.
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Figure 22: Adjusted value of coefficient of
determination R2

adj and coefficients of im-
portance of the efficiency η.
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Figure 23: Coefficient of prognosis of the
efficiency η.
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Figure 25: Coefficient of prognosis of the
power P .
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Figure 26: Adjusted value of coefficient of
determination R2

adj and coefficients of im-
portance of σmax.
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Figure 27: Coefficient of prognosis of σmax.
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Figure 28: Meta-model of optimal prognosis to approximate σmax in the subspace of the
most important input parameters αGV and Tt,Inlet.
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Figure 29: Meta-model of optimal prognosis to approximate the power P in the subspace
of the most important input parameters αGV and Ω.

Figure 30: Meta-model of optimal prognosis to approximate the efficiency η in the sub-
space of the most important input parameters αGV and Ω.
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Figure 31: History of the evolutionary al-
gorithm regarding P .
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Figure 32: History of the evolutionary al-
gorithm regarding η.

chosen output parameter j, depending on the regression model is the coefficients of im-
portance R2

−lj (see e.g. DYN (2009)). It can be used to detect multivariate significant
input parameters l for all response parameters j. All input parameters will have a signif-
icant influence to the objective terms, whereby, the importance of the Blade angle of the
Hub profile (DS hub angle) and the Rotor blend radius (DS FBlendRotor) is relatively
small with R2

−lj ≤ 0.05. Therefore, it is not recommended to reduce the number of design
parameters for the optimization.

The coefficient of determination of the maximal stress R2
adj = 45%(≤ 80%) is relatively

small. Because of that, the result of the Figure 26 should be proven using a meta-model of
optimal prognosis including all nonlinearities (see DYN (2009) for detailed reading). For
every response parameter the best meta-model is a moving least square approximation
using an exponential weighting function, as explained in Roos et al. (2007). The Figures
28 to 30 show these models in the subspace of the input parameters with the two largest
coefficients of prognosis, as given in the Figures 23 to 27. In summary, the coefficients
of prognosis are similar to the coefficients of importance. Furthermore, the coefficient of
prognosis (full model), including all nonlinearities, confirms the coefficient of determina-
tion R2

adj of the full linear model. But, as an additional result, the assigned meta-models
inform about conflicting objective terms, as shown in Figures 30 and 29 and non-convex
restrictions or objectives, as given in Figure 28 and give important knowledge about the
choose of the most efficient optimization procedure.

5.6 Global search optimization of the initial design
Unfortunately, as an essential result of the sensitivity analysis, the number of design
parameters can not be reduced. All of the input parameters of the Table 2 will have an
influence of the objective terms in the Equation (10) and the restriction of the Table 1.
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Figure 33: Input parameters of the best de-
sign as result of the evolutionary optimiza-
tion.
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Figure 34: Response parameters of the best
design as result of the evolutionary opti-
mization.

Table 4: Responses, restriction and objective of the best design during the design opti-
mization phases. N indicates the number of required design evaluations.
Responses & objective Power Efficiency Objective v. Mises
Design phase P η % function % stress σmax N

Initial design 1.2079 · 106 71.645 1.250 100 2.187 · 109 1
Sensitivity analysis 1.3413 · 106 80.746 0.887 71 2.175 · 109 75
Global search optimization 1.3355 · 106 81.309 0.869 70 2.112 · 109 198
Local design improvement 1.3293 · 106 81.544 0.863 69 2.149 · 109 84

Furthermore, the non-convex stress restriction, as shown in Figure 28 and the conflicting
objective terms, as shown in Figures 30 and 29 indicate a global search strategy using an
evolutionary algorithm (see DYN (2009) for detailed reading). Figure 20 shows N = 10
designs of the latin hypercube sampling procedure which are selected as start population
of the first evolutionary optimization step. Based on these start designs the global search
strategy converges after N = 198 design evaluations. The Figures 31 and 32 explain the
convergence history of the power P and efficiency η for all 260 design of experiments (10
start designs, 198 optimization runs, additional 19 identical and 33 unsuccessful design
evaluations). The best design #224 (257) with the input parameters is shown in Figure
33 with the associated responses of Figure 34. Because of the very large (concededly
random) design improvement of the sensitivity analysis of 29% the improvement of the
objective function results in additional 1% only, as collected in Table 4.
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Figure 35: Anthill plot of the 260 design of experiments containing 10 selected start pop-
ulation designs of the sensitivity analysis, 33 unsuccessful and N = 198 and additional 19
identical design evaluations of the evolutionary optimization. Furthermore, the responses
η, P and σmax of the initial design is shown. The best design of the global search strat-
egy is #224 (257), in comparison with the best design of the adaptive response surface
optimization.
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Figure 36: Input parameters of the best
design as result of the evolutionary opti-
mization.
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Figure 37: Response parameters of the
best design as result of the evolutionary op-
timization.
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Figure 38: Meta-model and best design #84 of the power P in the subspace of the most
important input parameters αGV and Ω.

Figure 39: Meta-model and best design #84 of the efficiency η in the subspace of the
most important input parameters αGV and Ω.
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Figure 40: The optimal design with a
geometry modification αHub = −0.337,
αShroud = −0.179 and αGV = −9.682.

Figure 41: Detail of the modified geome-
try.

5.7 Design improvement
Subsequent to a global search optimization it is recommended to improve the design
using a local optimization strategy. Because of the highly nonlinear structural behavior
and possible unsuccessful design evaluations the optimization problem is not continuously
differentiable. Therefore, a gradient-free optimization procedure, e.g. an adaptive response
surface method is suggested. The adaptive response surface method (see DYN (2009) for
detailed reading) does not provide differentiable and smooth problems and is very efficient
for n < 15 design parameters. The starting solution is based on the best design of the
global search optimization and the design space is reduced to 20% around this start
solution. The local design improvement converges after N = 84 design evaluations with
the input parameters are shown in Figure 36 with the associated responses of Figure 37.
In summary, the outcome of the deterministic optimization step, as explained in Figure
4, is an increasing of the rotor power P of the turbine engine by 10% and the isentropic
efficiency η by 14% compared to the initial design configuration. It follows from the
responses a minimization of the objective by 31%, as collected in Table 4, with in total
N = 75 + 198 + 84 = 357 design evaluations. The optimal design engenders a geometry
modification with αHub = −0.337, αShroud = −0.179 and αGV = −9.682 as explained in
Figures 40 and 41.

5.8 Evaluate the robustness of the optimized design
5.8.1 Global variance-based robustness evaluation

The next step within an iterative stepwise robust design optimization is to evaluate the
robustness of the current optimal design. Introducing the given nr = 15 uncertainties
of the Table 3 and the manufacturing tolerances an advanced latin hypercube sampling
with N = 47 design evaluations is used to prove the robustness of the optimized design
by means of the target distance of the mean values of the responses to the limit state
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Figure 42: Global variance-based robustness evaluation with N = 47 design evaluations
and matrix of the linear correlation (including the confidence levels) between random
parameters and responses.

conditions in the Table 1. The matrix of the linear coefficients of correlation in Figure 42
shows only few input parameters for each response which have a strong linear correlation.
The matrix shows only the statistical significant correlations which are greater than the
statistical error of the simulated correlation of the input parameters. The confidence levels
of the coefficients of correlation |ρij| = 0.5 and 0.7 indicate sufficient number of design
evaluation.

The Equations (11) and (12) can be used to estimate the safety level. Therefore, in
the following we can determine the influence of the random geometry, material, process
parameters and the surface uncertainties on the robustness and reliability of the optimized
design.

5.8.2 Interpolation of measured imperfections

For the proof of the robustness of the optimized design, manufacturing tolerances are
introduced in addition to the randomized operation, geometry and material parameters.
The geometry of specimen, either prototypes or parts from the production, can be scanned
with stereometric, video or laser based techniques at a high density, as sketched in Fig. 43.
By comparison to the CAD reference geometry, statistics of geometry deviations can be
obtained. These form the basis for a random field model of manufacturing tolerances.
The random field can be sampled by Monte Carlo methods in the way as outlined in
section 3.3, yielding a sample set of imperfect geometries. Hence each sample generated
in the scope of robustness or reliability analyses consists of a set of random parameters
(as listed in Table 3) and random field amplitudes Yi, cf. eq. (7). The imperfect blades
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Figure 43: Measurement of
surface geometries by stereom-
etry, to be compared with CAD
geometry. (GOM Gmbh)

Figure 44: Imperfect geometry of turbine blade is
scanned at 1500 points on the surface. A random
field is modelled by the statistics of measurements.

generated that way are loaded into the model used for multi-physics computation of the
turbine performance.

Due to lack of real data, imperfections were assumed by experience. Geometry devi-
ations are generated in the two directions lateral to the turbine blade. Mean values are
constantly zero, standard deviations are inhomogeneous, about 0.01 and 0.0075 mm. The
correlations are isotropic with correlation lengths of LXX = 25mm.

The geometry is scanned at 1500 points on the surface of the turbine blade, see Fig. 44.
The grid of measurement points is usually not compatible with the FE mesh which is used
in the analyses. Thus after generating samples of the random field, these have to mapped
to the FE mesh. The requirements to the interpolation procedure are: exact fit through
the measured values, smooth plot and no artefacts (such as local peaks). The Moving
Least Squares interpolation with linear functional basis and regularized weighting (DYN
2009; Most and Bucher 2005) has been evaluated to be the most suitable for this purpose.

5.8.3 Multivariate statistic with uncertainties

An additional result of the global variance-based sensitivity study is the identification of
the most significant parameters of the random variables due to important model responses.
Figures 45 to 50 show the most significant random parameters out of 15 CAD parameters
and 18 random amplitudes which have the largest influence of the variance of the random
field. In Figures 45 the adjusted value of coefficient of determination of the full monotone
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Figure 45: Adjusted value of coefficient of
determination R2

adj and coefficients of im-
portance of the efficiency η.
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Figure 46: Coefficient of prognosis of the
efficiency η.
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Figure 47: Adjusted value of coefficient of
determination R2

adj and coefficients of im-
portance of the power P .
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Figure 48: Coefficient of prognosis of the
power P .
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    38 %INPUT: Ttin
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Figure 49: Adjusted value of coefficient of
determination R2

adj and coefficients of im-
portance of σmax.
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Figure 50: Coefficient of prognosis of σmax.

nr Description Name Symbol COI COP
1 Blade angle (Guide vane) DS gv angle αGV 0 8
2 Total temperature inlet Ttin Tt,Inlet 38 46
3 Total pressure inlet ptin pt,Inlet 79 86
4 Specific gas constant myAirR R 26 48
5 Density of the steel material mySteelDensity ρ 0 7
6 Youngs‘ modulus Youngs Modulus E 19 24
7 Poissons ratio Poissons Ratio ν 5 7
8 Imperfection amplitude AMP Y 4 σ2

Y4
0 13

9 Imperfection amplitude AMP Y 8 σ2
Y8 12 18

Table 5: Identification of the nr = 9 most significant random parameters of the ran-
dom variables due to important model responses. The prediction values coefficient of
importance (COI) and coefficient of prognosis (COP) are taken from the Figures 45 to
50.
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Figure 51: Most significant imperfection
amplitude (AMP Y 4) σ2

Y4
of the random field

with large influence on σmax.

Figure 52: Most significant imperfection
amplitude (AMP Y 8) σ2

Y8 of the random field
with large influence on η.

nonlinear regression model for the efficiency η is relatively small with R2
adj = 60% < 80%.

Furthermore,in case of σmax, the sum of the single parameter coefficient of importance
is not equal to the R2

adj = 84%. Because of that, the result should be proven using a
meta-model of optimal prognosis including all nonlinearities and with respect to possible
existing multivariate dependencies. For every response parameter the best meta-model is
a moving least square approximation using an exponential weighting function.

The Table 5 puts together these nr = 9 random parameters, which describe the vari-
ance of η, P and σmax with 75%, 99% resp. 96% coefficient of prognosis. As an very
important result of the robustness evaluation, two imperfection modes with the ampli-
tudes σ2

Y4
, σ2
Y8 (AMP Y 4,AMP Y 8) of the random field effect large influences on η and σmax,

as shown in Figure 51 and 52. We can deduce therefore, that we have to include the influ-
ence of the surface uncertainties on the robustness and reliability of the optimized design
within a robust design optimization applied to structural, thermal and fluid analysis.

5.9 Reliability analysis of the optimized design
In the previous section the estimation of the failure probability is based on fitting of the
histogram with a probability density function using N = 47 samples (design evaluations).
Figures 53 to 55 show the histograms of power P , efficiency η and the maximal v. Mises
stress σmax with the limit state conditions gi(x) of Table 1.

Of course, the probability levels of the Table 56 are only a rough estimation within a
six sigma concept and a reliability analysis of the final design is recommended, especially
for small probability levels less than 4.5% or a sigma level greater than 2. With the
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Mean: 0.8083 Sigma: 0.002028

CV: 0.002509

Skew ness: -0.1842 Kurtosis: 2.345

Fitted PDF: Normal

Mean: 0.8083 Sigma: 0.002028

Limit x = 0.795

P_rel = 0 P_fit = 3.07755e-11

Probability P(X<x) = 0.95

x_rel = 0.811073 x_fit = 0.811601

Figure 53: Histogram of η with mean and
standard deviation and estimated P (F) =
3.1 · 10−11.

OUTPUT: myPower
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Statistic data

Min: 1.183e+06 Max: 1.467e+06

Mean: 1.323e+06 Sigma: 6.246e+04

CV: 0.04722

Skew ness: -0.03409 Kurtosis: 2.646

Fitted PDF: Normal

Mean: 1.323e+06 Sigma: 6.246e+04

Limit x = 1e+06

P_rel = 0 P_fit = 1.19045e-07

Probability P(X<x) = 0.95
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Figure 54: Histogram of P with mean and
standard deviation and estimated P (F) =
1.2 · 10−07.
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OUTPUT: Equivalent_Stress_Maximum
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Probability P(X<x) = 0.95
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Figure 55: Histogram of σmax with mean
and standard deviation and estimated
P (F) = 3.0 · 10−06.

Limit state Sigma P (F) P (F)
condition level σL (Equ. 12) (PDF)
g1(x, σmax) 5.13σ 1.45 · 10−07 3.0 · 10−06

g2(x, η) 6.56σ 2.69 · 10−11 3.1 · 10−11

g3(x, P ) 5.17σ 1.17 · 10−07 1.2 · 10−07

Figure 56: Sigma levels and associated prob-
ability of failure P (F) of the optimized design
(assumption: normal distribution of the ran-
dom response) and estimated P (F) based on
the fitted probability density function (PDF).
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Figure 57: 3D anthill plot of the 174 design evaluations (Supports) in the subspace of
the responses η, P and σmax. The number of clustered areas with high failure probability
is equal to the number of limit state conditions. The Unsafe domain samples of the
directional sampling are used to selected the failure domains.

Figure 58: 2D anthill plot of the 174 design evaluations (Supports) in the subspace of
the responses η and P . The most probable failure point β or Design point is located on
the limit state function defined by violation of η.
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N Number of designs 174 (6 failed)
Complete directions 10000

Number Total 18218
of Safe domain 14356
samples Unsafe domain 3862

Number of clustered areas with high failure probability 3
P (F) Probability of failure 2.556e-07

Standard deviation error 4.75e-08
Most DS gv angle -9.45221385684
probable Ttin 958.717901531
failure ptin 341041.795861
point myAirR 262.501207332
β mySteelDensity 7877.34645619

Youngs Modulus 195630092264
Poissons Ratio 0.299788054031

AMP Y 4 0.00200969530774
AMP Y 8 -0.0018453800473

FORM Distance median - design point (β) 5.674
Probability of failure 6.972e-09

Table 6: Results and effort of the reliability analysis using directional sampling on adap-
tive response surfaces. β can be used to evaluate partial safety factors and to compare
the calculate P (F) with the estimation using the first order reliability method (FORM).

identification of the random sub domain (see Table 5) directional sampling on adaptive
moving least square is used for reliability analysis (Roos and Ochsenfahrt 2009). The
moving least square approximation is based on N = 174 design evaluations of an adaptive
D-optimal design of experiment, as shown in Figures 57 and 58. A cluster analysis is used
to detect 3 failure domains with high failure probability and rotatable adaptive designs
of experiments can be used to improve the approximation accuracy. The directional
sampling procedure on the surrogate model detects samples in the unsafe domain. The
assigned failure probability P̄ (F) = 2.6 · 10−7 ≤ 3.4 · 10−6 indicates an optimized Six
Sigma Design.

6 Summary
Robust design optimization can provide multiple benefits. It permits the identification
of those design parameters that are critical for the achievement of a certain performance
characteristic. A proper adjustment of the thus identified parameters to hit the target
performance is supported. This can significantly reduce product costs. The effect of
variations on the product behaviour and performance can be quantified. Moreover, ro-
bust design optimization can lead to a deeper understanding of the potential sources of
variations. Hence, a minimization of the effect of variations (noise) is made possible,
and appropriate steps to desensitize the design to these variations can be determined.
Consequently, more robust and affordable product designs can be achieved.

For the presented variance and probability-based robust design optimization of the
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axial turbine the resulting system failure probability could be reduced to a six sigma
quality. The process integration of the complex structural, thermal and fluid analysis
is based on a parametric workflow management and automatic and embedded solution
procedure using the ANSYS Workbench environment with parallel and distributed solver
runs using optiSLang .

The robust design optimization respects 7 design parameters and 15 random geometry
parameters and additional manufacturing tolerances based on measurements and random
field modeling. The presented approach is an iterative decoupled loop in combination with
identification of the most significant random and design variables using the multivariate
statistic. As a first step the robustness evaluation can be used to prove the predictive
capability of the simulation model and to identify the most important parameters and to
solve reliability analysis, efficiently.

We can deduce therefore, that we have to include the influence of the surface uncer-
tainties on the robustness and reliability of the optimized design within a robust design
optimization applied to structural, thermal and fluid analysis.

Additional result of the optimization procedure is a Six Sigma Design without numer-
ical outliers. In summary, N = 75 + 198 + 84 + 47 + 174 = 578 parallel finite element
calculations are needed with a total calculation time of 48 hours on 8 Xeon 2.66 GHz
CPUs. In this sense, the provided successive robust design optimization approach is ap-
plicable for Design for Six Sigma Analysis of real world applications with highly efficiency.
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