
 

presented at the Weimar Optimization and Stochastic Days 2009  
Source: www.dynardo.de/en/library 

Lectures 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Metamodell of Optimal Prognosis 
(MOP) - an Automatic Approach 
for User Friendly Parameter 
Optimization 

Johannes Will & Thomas Most 



* Contact: Dr.-Ing. Johannes Will, DYNARDO – Dynamic Software and Engineering GmbH, 
Luthergasse 1d, D-99423 Weimar, E-Mail: johannes.will [@] dynardo.de 
 
Weimar Optimization and Stochastic Days 6.0 – November 15-16 October, 2009 1 

Metamodell of optimized Prognosis (MoP) - an Auto-
matic Approach for User Friendly Parameter 

Optimization 

Johannes Will*, Thomas Most** 

1 *DYNARDO – Dynamic Software and Engineering GmbH, Weimar, Germany 

**Research Training Group 1462, Bauhaus Universität Weimar, Germany 

Abstract 

In real case applications of CAE-based optimization tasks within the virtual 
prototyping process, every single numerical simulation may takes hours or even 
days. To perform CAE-based optimization, hence efficient surrogate models to 
replace the costly design runs would be an interesting alterative. Generally the 
available metamodel techniques show several advantages and disadvantages. 
Usually they are limited to a small number of optimization variables and the 
quality of prognosis is not known. In this paper we present an automatic approach 
for the selection of the optimal suitable metamodel as well as test the prognosis 
quality of the metamodel. We introduced the coefficient of prognosis (CoP) which 
enables an objective assessment of the metamodel prognosis based on an addi-
tional test data set. Therefore we call the selected metamodel with the best 
prognosis quality the metamodel of optimized prognosis (MoP). Together with an 
automatic reduction of the variable space using advanced filter techniques an 
efficient approximation is enabled also for high dimensional problems. We could 
verify the approach for several weakly and highly nonlinear examples with low 
and high dimensional input variable spaces. The approach can identify the re-
quired variables efficiently. After the generation of MoP the prognosis quality of 
important responses can be investigated and the MoP can be used for optimization 
purpose. Having all pieces together we set up a fully automatic, user friendly flow 
starting with a Latin Hypercube scan of the design space, generating the MoP and 
running optimization algorithms on MoP. After validating the “optima” from MoP 
at the real design space the user can decide to stop or enter further optimization 
procedures. 

Keywords: surrogate models, regression analysis, variable reduction, 
Coefficient of prognosis (CoP), metamodel of optimized prognosis (MoP), 
optiSLang 



1 Introduction 

Meta modelling is one of the most popular strategies for design exploration within 
nonlinear optimization and stochastic analysis (see e.g. [1, 2, 3]). Moreover, the 
engineer has to calculate the general trend of physical phenomena or would like to 
re-use design experience on different projects. Due to the inherent complexity of 
many engineering problems it is quite alluring to approximate the problem and to 
solve other design configurations in a smooth sub-domain by applying a surrogate 
model ([4, 5]). Starting from a reduced number of simulations, a surrogate model 
of the original physical problem can be used to perform various possible design 
configurations without computing any further analyses. In one of our previous 
publications [13] we investigated several meta-model types and variable reduction 
techniques by means of different examples. In this previous paper we summarized 
that no universal approach exists and the optimal filter configurations can not be 
chosen generally. Therefore we developed an automatic approach for this purpose 
based on a library of available efficient meta-models and tools for variable reduc-
tion. This approach serves us based on a new measure for the approximation 
quality the Meta-model of Optimal Prognosis – the coefficient of Prognosis. 
This paper is constructed as follows: first we present several meta-model ap-
proaches which are used later in our investigations. Then we introduce different 
filter techniques for variable reduction. Afterwards we present the framework of 
the meta-model selection and we finish this paper by validating the presented 
methodology by means of several numerical examples. 

2 Metamodel approaches 

2.1 Polynomial least square approximation 
 

 

Figure 1: Original model response function 
 

Figure 2: Quadratic polynomial least square 
approximation   ),(ˆ yxz),( yxz
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A commonly used approximation method of model responses, objectives, con-
straints and state functions  
  )(ˆ xy)(xy a

is the regression analysis. Usually, the approximation function is a first or second 
order polynomial [6, 7, 8] as shown in Figure 2. Based on the definition of the 
polynomial basis  
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the approximation function reads  
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The approximate coefficients  can be calculated as follows: using a defined 
number  of function values  
        (3) [ yy K21=y
which can be approximated by the polynomial as  
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where  and  contain the approximation errors and the base polynomials of 
each support point, respectively, with  
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Together with the least square postulate  
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we obtain the following relation depending on the coefficients   
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The solution of Eq. (8) yields to the well-known formulation  
 .        (9) )(=ˆ PPβ T

Of course the accuracy of the approximation compared to the real problem has to 
be checked and verified. For reasonably smooth problems, the accuracy of re-
sponse surface approximations improves as the number of points increases. 
However, this effect decreases with the degree of oversampling. An attractive 
advantage of the response surface methodology is the smoothing by approximat-
ing the sub problem. Especially for noisy problems like crash analysis, for which 
the catch of global trends is more important and the local noise may not be mean-
ingful, a smoothing of the problem may be advantageous. However, linear and 
quadratic functions are possibly weak approximations near and far from certain 
support points. Using polynomials of higher than second order may only result in 
higher local accuracy with many sub-optima. Because of that in the last years, 
different advanced surrogate models have been developed to improve the accu-
racy and predictability of surrogate models. 
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2.2 Moving Least Squares approximation 
The Moving Least Squares (MLS) approach was introduced by [9] and can be 
understood as an extension of the polynomial regression. Similarly the basis 
function can contain every type of function, but generally only linear and quad-
ratic terms are used. This basis function can be represented exactly by obtaining 
the best local fit for the actual interpolation point. The approximation function is 
defined as  
 )        (10) ()(=)(ˆ xaxpx Ty

)(x

m n

).(=)(ˆ xaPPxP Ty

)(= sww

with changing (``moving'') coefficients a  in contrast to the global coefficients 
of the polynomial regression. 
Again the number of supporting points  exceeds the number of coefficients , 
which leads to an over determined system of equations. This kind of optimization 
problem is solved by using the least squares approach  
        (11) 
In order to obtain a local regression model in the MLS method distance depending 
weighting functions  have been introduced, where s  is the standardized 
distance between the interpolation point and the considered supporting point  
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and  is the influence radius, which is defined as a numerical parameter. All 
types of functions can be used as weighting function  which have their 
maximum in  and vanish outside of the influence domain specified by . 
Mostly the well known Gaussian weighting function is used  
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where the definition of the influence radius  influences directly the approxima-
tion error. A suitable choice of this quantity enables an efficient smoothing of 
noisy data. In our work the influence radius  is chosen automatically based on 
an additional test data set. 

D

The final approximation scheme reads  
       (14) 
 with  

T

      (15) 
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=
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In Figure 3 and 4 the approximation functions for deterministic and noisy data 
with automatically determined  are shown. 
 
In [10] a new weighting function was presented which enables the fulfilment of 
the MLS interpolation condition with high accuracy.  
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with  
 1;)(=)(~ 22 <<+ − εεsswR .      (17) 
 

 

The regularization parameter ε  has to be chosen small enough to fulfil the sup-
port point values with a certain accuracy. This approach is very suitable for 
problems where an interpolating meta-model is required.  

Figure 3: MLS approximation of determi-
nistic data (exponential weighting) 

Figure 4: MLS approximation of noisy 
data (exponential weighting) 

 

Figure 5: MLS interpolation of deterministic 
data (regularized weighting) 

Figure 6: MLS interpolation of noisy data 
(regularized weighting) 
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For problems of noisy input data the noise is represented by the approximation 
function and thus the classical MLS approach with exponential weighting function 
is more suitable. In Figure 5 and 6 the interpolating MLS results are given for 
comparison. The main advantage of the MLS approach compared to the polyno-
mial regression is the possibility to represent arbitrary complex nonlinear (but still 
continuous) functions. By increasing the number of support points the approxima-
tion function will always converge to the exact formulation. 

2.3 Box-Cox transformation  
The approximation quality of the presented meta-model approaches can be gener-
ally improved by a transformation of the response values which reduces nonlinear 
effects. A very suitable transformation for this purpose is the Box-Cox transfor-
mation proposed by [11] which is a family of power transformations covering a 
wide range of transformation functions. This transformation is defined based on a 
transformation parameter λ  as  
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where the scaling with the geometrical mean y  of the m  sample values is neces-
sary to obtain comparable error values for different values of λ . In Figure 7 
different transformation functions are shown. Based on the formulation in Eq. 
(18) we search for the optimal λ  which minimizes the approximation error  
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ŷThe approximation function  is carried out using polynomial regression on the 
whole data set. For the MLS approach the basis of this polynomial is assumed 
always as quadratic without mixed terms. Once the optimal value λ  is obtained 
the support point values are transformed and the meta-model can be build up. The 
approximations of the meta-model at the interpolation points have to be back-
transformed afterwards. This back-transformation reads  
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Figure 8: Improvement of an approximation 
function by the Box-Cox transformation 

Figure 7: Box-Cox transformation for 
different values of λ

 
From Eq. (20) it can be seen, that for arbitrary 0≠optλ  the back-transformation 
can only be performed if  
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this can not be assured for every type of meta-model and approximated function. 
Thus we define the reciprocal of λ  to be a natural number, and then the back-
transformation can always be performed. This limits the set of possible values for 
λ  to the following  
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In Figure 8 the MLS and polynomial approximation functions are shown for a 
simple example. The figure indicates that on the one hand the approximation error 
in the support points is reduced due to the transformation and on the other hand 
the smoothness of the approximation function is increased which is a quite useful 
property for a later analysis on the approximation function. 

3 Variable reduction  

3.1 Significance filter 
Various statistical analysis procedures are available for the subsequent evaluation 
of correlation of input parameters and the responses. For example, the coefficients 
of correlation ρ  are calculated from all pair wise combinations of both input 
variables and response according to:  
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The quantity ρ , called the linear correlation coefficient, measures the strength 
and the direction of a linear relationship between two variables. The linear corre-
lation coefficient is sometimes referred to as the Pearson product moment 
correlation coefficient. The quadratic coefficients of correlation  
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is defined as the linear coefficient of correlation (see Equation (23)) between the 
least-squares fit of a quadratic regression  of the variable  on the samples 

) . A correlation greater than 0.7 is generally described as strong, whereas a 
correlation less than 0.3 is generally described as weak. These values can vary 
based upon the type of data being examined. All pair wise combinations (

) ,k x

ji ) can 
be assembled into a correlation matrix , as shown in Figure 9.  

,

XX

90% 99%

C
The computed correlation coefficients between the input variables vary from the 
assumed values depending on the sample size. This deviation is used to judge in a 
first step, which variables are significant concerning there influence on the output 
variables. We define an error quantile which is chosen between  and  
and compute the corresponding correlation error in the input-input correlations. 
This is done for linear and quadratic correlations simultaneously. Based on these 
quantile values we assume only these input variables to be significant concerning 
an output variable if there correlation values are above the given error values. For 
the most practical cases this leads to a reduced number of input variables which is 
shown in Figure 10. All values in gray are assumed to be insignificant. 
 

 

Figure 9: Matrix  of the linear correlation coefficients XXC
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Figure 10: Matrix  of the most significance linear correlation coefficients XXC

CoD

3.2 Importance filter  
Generally the remaining variable set still contains variables which are not needed 
for an approximation. With the importance filter we identify the important vari-
ables for the approximation model as described as follows: Based on a polynomial 
regression using the remaining variables of the significance filter we estimate the 
quality of the model representation by the coefficient of determination ( ):  
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In order reduce the influence of an increasing number of variables the adjusted 
coefficient of determination was introduced  

 ( )22 111= R
pN

NRadj −
−
−

−       (26) 

pwhere  is the number of coefficients used in the polynomial regression. Based 
on this quantity the influence of each variable is studied by leaving this variable 
out of the regression model and compute the modified CoD . The difference be-
tween the CoD  of the full and the reduced model is defined as the coefficient of 
importance introduced by [12]. This coefficient of importance ( ) reads for the 
variable   

CoI
i

).,,,,(),,= 11 nini XXXCoDXCoI KK − ,1iX K+( 1XCoD   (27) −
Based on a given value of the minimum required  only the variables having  minCoI
         (28) mini CoICoI ≥
 are considered in the final approximation. Generally the value CoI  is taken 
between 1%  and . 

min

9%
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4 Meta-model of Optimal Prognosis (MoP) 

4.1 Coefficient of prognosis 
The selection of the optimal filter configuration and the best suitable meta-model 
for a specific problem is difficult as shown in [13]. In order to develop an auto-
matic approach we need to define a measure for the characterization of the 
approximation quality. For this purpose we use the generalized coefficient of 
determination  
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which results for the special case of pure polynomial regression in the formulation 
of Eq. (25). The generalized  is applicable for all types of meta-models and 
is equivalent to the square of the linear correlation coefficient between the true 
sample values and the model predictions. In order to judge the quality of an ap-
proximation we have to evaluate the prognosis quality. For this purpose we use an 
additional test data set. The agreement between this real test data and the meta-
model estimates is measured by the so-called coefficient of prognosis   
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The advantage of the CoP  compared to other existing error measures, for exam-
ple the mean squared error, is the automatic scaling of the , where we can 
derive that for example a  equal to 0.8 is equivalent to a meta-model predic-
tion quality of 80%  for new data points. 
 

4.2 Determination of the optimal meta-model 
Based on the definition of the coefficient of prognosis we can derive the optimal 
meta-model with corresponding variable space as follows: For each meta-model 
type we investigate all possible significance and filter configurations by varying 
the significance quantile from  down to a given minimal value. Then a poly-
nomial regression is built up and the coefficients of importance are calculated for 
each variable. The threshold CoI  is varied from to a given value and based 
on the remaining variables the meta-model is built up and the coefficient of prog-
nosis is computed. The configuration with the maximum  is finally taken as 
optimal meta-model with corresponding variable space for each approximated 
response quantity. While for the meta-model construction the training data set is 
used for the meta-model itself and the test data set for the calculation of the  
the correlations for the significance filter and the regression for the importance 
filters are obtained by using the merged data set from training and test data. 
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If no additional test data set is available the initial data set is split into training and 
test data. The samples are selected in that way that in each data set the response 
ranges are represented with maximum conformity to the entire data set. 
 

4.3 Ranking of variable importance 
Similar to the CoI  we want to formulate a measure for the importance of a single 
variable on the overall prognosis quality, the CoP . For this purpose we utilize 
variance based sensitivity indices [14] on the optimal meta-model approximation 

( ) ( ,  MOP
Tii SCoP ⋅=CoP )YVXYVS MOP

i
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Ti /1−=
MOP
TiS

  (31) 

where the sensitivity indices considering total effects  are evaluated using 
the conditional variances ( )iMOP XY

i

V  on the optimal meta-model using the origi-
nal input variable distributions. If we sum up all single CoP  we should end up 
with the total CoP  for a purely additive model. Higher values indicate interaction 
terms between input variables.  
 

5 Numerical examples 

5.1 Weakly nonlinear problem 
In this example we investigate a weakly nonlinear problem with 50 input vari-
ables. For our procedure eight sets of 100 Latin Hypercube samples are available. 
We use 100, 200, 300 and 700 samples as training data and one 100 sample set as 
test data. For the cases of 100, 200, 300 training samples we use the still available 
400 samples as verification data. From a number of several response quantities we 
have chosen two representatives. In Figure 11 the anthill-plots for both responses 
depending on the variable with the highest influence is shown. The figure indi-
cates, that for both response the influence is almost linear. In Table 1 the obtained 
results for the optimal meta-model and variable space is given.  
 

     

Figure 11: Anthill-plots for the weakly nonlinear problem 
 
The results clearly indicate that an excellent prognosis quality can be obtained by 
the optimal meta-model and the estimated prognosis from the CoP  is close to this 
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of the verification data set. For the first response the variable space can be dra-
matically reduced and for the second case the most variables remain in the final 
space. In this example the benefit of a sophisticated meta-model as MLS is not 
huge compared to classical polynomial regression but still remarkable. Another 
interesting result is that with increasing number of training samples the optimal 
basis order increases. Furthermore we observe for the second response that the 

 of the training data set may judge the approximation as a very good regres-
sion but the prognosis for new data is of less quality. This indicates the 
requirement of a measure like the CoP  for a realistic assessment of the prognosis 
quality of the meta-model. 

CoD

In Figure 12 a three-dimensional plot of both responses depending on the two 
most important input variables is shown. A good agreement of approximation and 
training and test data can be recognized for the first response due to the small 
number of remaining variables. For the second response where the final variable 
number is much larger the subspace-plot does not provide very much information. 
However, the weakly nonlinear behaviour of the response function and the agree-
ment of approximation and available samples are apparent. 
 

 Response 1 Response 2 

 Number of training samples Number of training samples 

 100 200 300 700 100 200 300 700 

Polynomial  

No. variables 4 5 3 3 25 31 32 38 

Optimal basis linear quadr. quadr. quadr. linear linear quadr. quadr. 

CoD

CoP

CoP

 Training 0.903 0.899 0.901 0.900 0.879 0.820 0.852 0.835 

 Test 0.899 0.896 0.902 0.905 0.786 0.815 0.831 0.834 

 Verification 0.894 0.892 0.897 - 0.691 0.738 0.765 - 

MLS  

No. variables 3 4 4 4 25 31 32 32 

Optimal basis linear linear quadr. quadr. linear linear quadr. quadr. 

CoD

CoP

CoP

CoD

 Training 0.970 0.977 0.996 0.989 0.879 0.918 0.886 0.917 

 Test 0.920 0.929 0.956 0.969 0.786 0.818 0.832 0.841 

 Verification 0.927 0.917 0.946 - 0.658 0.735 0.768 - 

full  0.900 0.894 0.899 0.893 0.860 0.819 0.825 0.814 

Table 1: Results for the weakly nonlinear example with 50 input variables 
 

Weimar Optimization and Stochastic Days 6.0 – November 15-16 October, 2009 12 



 

Figure 12: Training (blue) and test (red) data and MLS approximation (green) of 
the weakly nonlinear problem for both responses depending on the two most 

significant variables 

5.2 High dimensional instability problem 
In this example a high dimensional problem is investigated where the global trend 
is disturbed by an instability. This problem has 100 input variables and three sets 
of 100 Latin Hypercube sampling are available. Figure 13 shows the anthill-plots 
for the two most important variables. The figure indicates that the response shows 
a strongly nonlinear behaviour depending on variable 99. We have applied our 
approach by using 200 samples as training data and the remaining 100 samples as 
test data. Based on a polynomial regression the  of the model used for the 
importance filter is quite small as indicated in Table 2. The  of the test data 
set confirms this results which shows that this problem can not be represented 
sufficiently by a classical polynomial. If more sophisticated metamodels are used 
the MoP approach results in significant better results detecting two variables in 
final variable space. These results and the belonging approximation function are 
given additionally in Figure 2. For this example it is quite clear that more complex 
metamodels are not only necessary to improve the approximation quality but also 
to detect the important variables correctly. 

CoD
CoP

 

   

Figure 13: Anthill-plots for the high dimensional instability problem 
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   Polynomial MLS 

 No. variables  13 2 

CoD

CoP

fullCoD

 Training  0.289 0.568 

 Test  0.205 0.462 

   0.312 0.312 

Table 2: Three-dimensional plot of the training (blue) and test (red) data and MLS 
approximation (green) for the high dimensional instability problem and corre-

sponding numerical results 
 

5.3 Low dimensional instability problem 
This example is quite similar to the previous one but the investigated initial vari-
able space consists of 25 input variables which are much less as before. Again an 
instability leads to a highly nonlinear dependence of the response on the input 
variables. For our investigation only 100 Latin Hypercube samples are available 
which are split into the training and test data set by using 50/50, 70/30 and 80/20 
percentage fractions. 

 

Figure 14: Anthill-plot of the response depending on the most important variable 
19 with corresponding optimal approximation for different sample splitting 
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  Sample splitting   50/50 70/30 80/20 

 MLS  No. variables  1 1 9 

 CoD  Training  0.735 0.753 0.929 

 CoP  Test  0.587 0.462 0.668 

 MLS  No. variables  1 1 1 

(rearranged samples)  CoD  Training  0.705 0.692 0.705 

 CoP  Test  0.543 0.690 0.760 

  
fullCoD   0.273 0.273 0.273 

Table 3: Results for the low dimensional instability problem for different sample 
splitting from two different arrangements of the entire data set 

 
The results are shown in Figure 14 and Table 3. The figures indicate a similar 
approximation function for the two investigated sample arrangements with 50/50 
and 70/30 sample splitting. For the first arrangement with 80/20 splitting the test 
data are not suitable to lead to the optimal approximation model. The CoP  values 
shown significant deviations for almost similar approximation functions as shown 
in Figure 14. This is also a result of the small number of test samples. This clari-
fies that a certain amount of test samples is require for a stable application of the 
MoP approach. Nevertheless for this example the approach serves a very good 
approximation of the nonlinear problem. 

5.4 Very high dimensional problem 

 

Figure 15: Anthill-plot for the very high dimensional problem 
 
In the final example we investigate a very high dimensional problem with 500 
input variables. 500 Latin Hypercube samples are used with a 80/20 splitting for 
the training and test data. Three different responses are investigated with the MoP 
approach. In Figure 15 the second response is shown depending on the most 
important variable. The MoP approach leads for all responses to a remarkable 
reduction of the variable space and a good prognosis of the optimal meta-model. 
The results in Table 4 show only a small difference between the optimal polyno-
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mial and MLS approximations which indicates a weak nonlinearity in the MoP. 
Clearly the number of support points in combination with the number of important 
variables restrict the ability of the MoP to represent response function non linear-
ity.  
 

    Response 1 Response 2 Response 3 

 Polynomial  No. variables  33 11 26 

 CoD

CoP

 Training  0.872 0.888 0.872 

  Test  0.642 0.831 0.791 

 MLS  No. variables  33 11 26 

 CoD

CoP

fullCoD

 Training  0.872 0.927 0.984 

  Test  0.642 0.836 0.811 

    0.819 0.895 0.904 

Table 4: Results for the very high dimensional problem 

6 Implementation of CoP/MoP in optiSLang 

Since version 3.1 the CoP/MoP approach is included in the commercial software 
optiSLang [15]. There is a flow created which can evaluate CoP/MoP for any set 
of samples or test data. The user can modify the data split, the metamodel type 
which will be evaluated, the different filter settings and can force to reduce (Delta 
CoP) the number of important variables in the final MoP model. 

 

Figure 16: Settings of the MoP generation flow in optiSLang 
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Since it is available in optiSLang the generation of the metamodel of optimized 
prognosis and the calculation of coefficient of Prognosis was successfully applied 
at several problem types. The following example shows a noise non-linear prob-
lem having 8 optimization variables and 200 samples. Running traditional 
correlation analysis using Spearman ranked data two important variables could be 
identified and a CoI of 73% (Fig. 17) for the full model was measured. Running 
CoP/MoP we also find the two important variables, but with very good represen-
tation of the nonlinear response function we can achieve a CoP of 99% (Fig. 
17/18).     
 

 

Figure 17: left Coefficient of Importance using traditional correlation analysis, 
right: Coefficient of Prognosis using new CoP/MoP approach 
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Figure 18: Vizualisation of the MoP, black dots represent the sample set (regres-
sion and test data set) 

 
From our experience so fare we can state and recommend: 

- Compare CoI of correlation analysis and CoP, the differences between the 
two should be verified. 

- Check plausibility and prognosis quality by plotting the MoP with the two 
most important input variables. 

- If the CoP/MoP approach can reduce the set of important to a very small 
number (<5) very good representation of nonlinearities are achives even 
with small number of samples (100). 

- If the CoP/MoP approach cannot reduce the set of important input parame-
ters smaller than 10 ..20 the sample set must be large to represent non-
linear correlation. 

- The CoP measurement of the full model is more reliable than the CoI 
measurement of the full model. 

 

7 Conclusion 

In this paper we presented an approach for an automatic selection of the optimal 
metamodel for the investigated problem. We introduced the coefficient of progno-
sis which enables an objective assessment of the metamodel prognosis based on 
an additional test data set. We could verify the approach for several weakly and 
highly nonlinear examples with low and high dimensional input variable spaces. 
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The approach can identify the required variables efficiently and the obtained 
optimal metamodel can be used afterwards for a fast optimization. The only re-
striction is a required minimum number of test samples to represent the variable 
space sufficiently. In our future work we will address following improvements: 
 

- include cross correlation techniques to become independent of the splitting 
of test data set 

- improve CoP measurement of single variable importance in case of 
small/medium number of sample points 

- implement adaptive sampling strategies  
 
After generation of MoP the next step will be to use the MoP for optimization 
purpose within optiSLang. Then a black box algorithm combining high end sensi-
tivity study and optimization will be available for medium and high dimensional 
non linear problems. 
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