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Abstract 

Manufactured parts differ from ideal shape. Therefore tolerances are used in 
product development in order to constrain the admissible deviations. The impact 
of tolerances is analyzed in different ways. It is common to employ Monte Carlo 
Sampling in order to obtain a statistical result by the iterative evaluation of the 
functional relationship. In contrast to this, Robust Design has established a bunch 
of sampling methods that are computationally more efficient. 

The objective of the paper is therefore to outline the basics of two selected 
sampling methods. Implementing a case study, advantages and disadvantages of 
the compared methods are highlighted. A one way clutch assembly, which is 
known as benchmarking computer aided tolerancing, serves as case study. The 
functional relationship is nonlinear and therefore of special interest. A numeric 
comparison was performed between Monte Carlo Sampling (MCS) and Latin 
Hypercube Sampling (LHS) using MATLAB. It can be found from this study that 
Latin Hypercube Sampling is quite suitable for the use in tolerance calculation. 
Mean values and variances can be estimated using lesser samples compared to 
MCS reliably. Therefore LHS is proposed as suitable sampling strategy especially 
for time consuming numeric problems in tolerance analysis too. 

Keywords: Tolerancing, computer aided tolerancing, sampling methods, Monte-
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1 Introduction and Objective 

Modern methodologies and tools enable the product developer to design products 
taking different aspects like Design to Reliability or Design to Quality into ac-
count. The process of virtual validation is one of the pivotal tasks during product 
development e.g. in automotive industry. Due to the demand for frontloading an 
intensive application of simulations in product development establishes and there 
is the need for precise and efficient analysis techniques.  
One of the major tasks for engineers is to limit the influence of varying character-
istics caused by manufacturing imperfections using tolerances. To support the 
product developers a plenty of computer aided methods and tools emerged. A 
high accuracy of simulation results obtained from these tools is demanded while 
considering the required calculation time. Therefore much effort for the optimiza-
tion of analysis methods is spent in research (cf. Table 1). Among these 
techniques Monte Carlo Sampling based analysis is one of the most versatile 
methods for use in tolerances. It can be applied to linear and nonlinear relation-
ships as well, but suffers from a high amount of samples which can be 
computationally expensive. Therefore in this paper Latin Hypercube Sampling 
(LHS) is introduced for use in tolerance analysis instead of Monte Carlo Sampling 
(MCS). Based on a comparison of input sampling accuracy, numeric effort (calcu-
lation time) and quality of the result due to the amount of samples chosen, the 
benefit from LHS is outlined. The distribution characteristics mean value and 
standard deviations are quantitatively evaluated performing simulations on a case 
study problem. 

2 State of the art in Computer Aided Tolerancing (CAT) 

© KTmfk, 2010 | Stockinger/Stuppy

Tolerancing/Dimensional Managment

Tolercance Synthesis Tolerance Analysis

Tolerance Calculation
(Analytic and Numeric Methods )

Tolerance Model
(Functional Relationship)

Tolerance Specification
(Geometric Product Specification)

O
bj

ec
tiv

es
in

 P
D

P
Th

eo
re

tic
al

Fr
am

ew
or

k

PDP: Product Development Process

Tolerancing/Dimensional Managment

Tolercance Synthesis Tolerance Analysis

Tolerance Calculation
(Analytic and Numeric Methods )

Tolerance Model
(Functional Relationship)

Tolerance Specification
(Geometric Product Specification)

O
bj

ec
tiv

es
in

 P
D

P
Th

eo
re

tic
al

Fr
am

ew
or

k

PDP: Product Development Process  
Figure 1: Objectives of and Theoretical Framework in Dimensional Management 
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Tolerancing is a major part of the so called Dimensional Management (DM). In 
DM two major objectives exist in the product development process: tolerance 
synthesis and tolerance analysis. They can only be performed if a consistent 
model of tolerance specification exists (such as parametric tolerance definitions). 
It allows specifying the functional behaviour of a system regarding deviations by 
setting up a tolerance model. (cf. Figure 1) 
So a mathematical formulation of the tolerancing problem can be derived [NIGAM 
1995]. The relationship of input variables and system responses in a mechanical 
assembly is often modelled as a vector loop and can consecutively be expressed 
by  

)...,,( 21 mj xxxfy =     (1) 

Where xi (i∈{1,…, m}) are input parameters with known distributions/lower 
order statistical moments and yj (j∈{1,…, k}) represent the assembly responses. 
The assembly responses are also the so called product key characteristics (PKC). 
They resemble a quality measure which is important for product function or for 
aesthetic purposes. A simple example of a tolerance chain is shown in the follow-
ing figure (Figure 2). 
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Figure 2: Linear tolerance chain on an assembly [LIU 1995] 

Based on the (linear or nonlinear) functional behaviour (1) various calculation 
methods exist to determine the deterministic and stochastic behaviour of the as-
sembly deviations. Analytic methods – which are limited in their application in 
some cases – as well as numeric approaches allow the estimation of key character-
istic distributions (mean, standard deviation, skewness and kurtosis) based on this 
functional relationship. A selection of these methods is shown in the following 
overview: 
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Table 1: Analytic and numeric methods for use in geometrical tolerance analysis 
Analytic methods Numeric Methods 
 Worst Case Method [JORDEN 2001, 

KLEIN 2007], 
 Root Sum Square [JORDEN 2001, 

KLEIN 2007, NIGAM 1995], 
 Estimated Mean Shift Model 

[GREENWOOD 1988], 
 Croft´s Method [NIGAM 1995], 
 Hasofer-Lind-Index [NIGAM 1995] 

 Taguchi´s Method [NIGAM 1995], 
 Method of System Moments 

[GLANCY 1994], 
 Second-Order Tolerance Analysis 

[GLANCY 1994], 
 Monte Carlo Simulation [NIGAM 

1995], McCATS [GAO 1996]. 

 
In addition to these methods also the sensitivity of a response is of interest – 
especially during the early stages and the optimization phases in product devel-
opment. Therefore contributor analysis is performed to obtain information on the 
most important variables. This analysis is performed using local sensitivity meth-
ods. Again, analytic (MANNEWITZ 2005a, MANNEWITZ 2005) as well as numeric 
methods (e.g. High Low Median Analysis [WISNIEWSKI 1998]), can be found in 
literature and software applications.  
This kind of analysis method is not in the focus of this paper. Please have a look 
at [STUPPY 2010] for further information and a complex mechanism analysed in a 
case study. 

3 Sampling Methods Fundamentals and Implementa-
tion 

There are different strategies to obtain a stochastic response from a system. A 
basic approach among these strategies is to iteratively evaluate the functional 
relationship of the system by different sets of scattering input parameter combina-
tions. In order to obtain reliable stochastic results, sampling strategies were 
developed that cover the whole space of the multidimensional parameter space. 
Among them are Monte Carlo Sampling and Latin Hypercube Sampling which 
are introduced in detail in this paper. 

3.1 Monte-Carlo-Simulation 
According to [VDI 4008] the Monte Carlo Sampling is a method for modelling of 
random variables with the aim to calculate certain properties of probability den-
sity functions. The simulation process can be subdivided into the following steps 
[WISNIEWSKI 1998] (see Figure 3): First of all random variables have to be identi-
fied and the most important have to be selected. This is accompanied by the 
definition of the probability distributions of the input variables. In case of toler-
ance simulation the random variables are the part dimensions xi (cf. Figure 2) and 
the distribution should resemble the tolerance value Ti of dimension xi.  
A simulation of deviating geometry and assembly is carried out by randomly 
selecting values for all dimensions xi according to the tolerance specification Ti 
and the selected distribution type by using the plain Monte-Carlo technique.  
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The functional relationship is set up by defining the vector loop consisting of xi 
and yi. It allows the computation of the results for quality criteria yi. The post-
processing of the simulation results yields information on the performed meas-
urements on yi = PKCi (distributions, mean, standard deviation, process capability 
indices). The major advantage of this procedure is that the functional behaviour is 
described by analytical equations, which means evaluation using the Monte-Carlo 
method can be performed fast. The Monte-Carlo simulation process is outlined in 
Figure 3. 
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Figure 3: Application of Monte Carlo Method in tolerance simulation 

3.2 Latin Hypercube Sampling 
An alternative to sample a set of input values according to their probability distri-
bution was proposed by [MCKAY 1979]. The procedure can be outlined as follows 
(cf. Figure 4): In analogy to MCS also the input variables xi have to be deter-
mined. Moreover the suitable probability distributions of these parameters have to 
be selected.  
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Figure 4: Application of Latin Hypercub Sampling in tolerance simulation 

This information is used to generate input parameter xi combinations, which take 
account for the whole range of the parameter scatter and the involved distribu-
tions: This can be achieved by dividing the probability distribution into n sections 
of equal probability (n is the amount of simulations planned). Within these sub-
sections an analysis point is selected randomly. Every input variable is mapped to 
a vector with n discrete input values resembling the specified distribution. All 
input parameter vectors are joined into an n x n matrix after permuting the vector 
components in such a way that a great area in the whole input parameter space is 
covered. The n rows of the matrix then contain n simulation input parameter sets 
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for computation of the functional relationship. This approach is called Latin Hy-
percube Sampling. Major advantage of this approach is that the admissible range 
of scatter is exhausted and no part of the probability distribution is left out. This 
sampling can be used to perform a tolerance analysis by the iterative process 
shown in Figure 4. 

3.3 MATLAB Implementation 
Both approaches can be easily implemented, configured and evaluated using 
MATLAB® Statistics Toolbox. For MCS a matrix of input variables mX is set up 
containing n samples of xi per column. Each column is sampled under the assump-
tion of normal distribution (normrnd) with a defined mean value (vMean(i)) and 
standard deviation (vStandardDeviation(i)). 
MCS – Code Snippet 
%generating random sampling for every variable x=[x1 x2 ...] 
 for i=1:size(vMean,2) 
     mX(:,i) = normrnd(vMean(i),vStandardDeviation(i),nSampleSize,1); 
 end 
For LHS a covariance matrix (mCovariance) is set up containing the standard 
deviations on its diagonal (diag(vStandardDeviation.^2)). Taking into account 
dependent variables is possible by filling in covariance values on non-diagonal 
elements of the symmetric matrix (e.g mCovariance(2,3)). Finally the samples are 
generated using (lhsnorm). This results in a matrix of input variables mX contain-
ing n samples of xi per column. 
LHS – Code Snippet 
%generating covariance matrix 
 mCovariance=diag(vStandardDeviation.^2); 
%for dependent variables:  
 mCovariance(2,3)=mCovariance(2,2); 
 mCovariance(3,2)=mCovariance(2,2); 
%generating latin hypercube samples 
 mX=lhsnorm(vMean,mCovariance,nSampleSize); 

4 Case Study 

The objective of this paper is to quantify the differences of the two approaches 
using a case study with a nonlinear relationship based on this basic MATLAB 
implementation. As case study a well-known problem in computer aided toleranc-
ing was chosen: a one way clutch assembly introduced and analysed by [GLANCY 
1994, GLANCY 1999].  
This mechanism is analysed here using MCS and LHS in order to be able to an-
swer the following research questions:  

1. Does the accuracy of the sampling of input parameters differ? What is a suitable 
amount of samples for the evaluation of the case study mechanism.  

2. Does the computation time differ significantly for the two methods focused here? 
3. Do the sampling strategies provide accurate results? 
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4.1 Problem statement and functional relationship 
It is the task to analyse the function of a one way clutch assembly. It transmits 
torque in a single rotational direction. The assembly consists of a gear shaft (2) 
which provides torque to be transmitted to the bearing race (4) in case of counter-
clockwise rotation. The force is transmitted by four roller wedges (1) which are 
constrained by four springs (3). “When the hub rotates in a counter-clockwise 
direction, the roller wedges between the hub and the ring, locking these two parts 
together. When the hub turns in a clockwise direction, the spring is compressed by 
the roller, the roller slips, and the hub is allowed to rotate freely.” [GLANCY 1999]. 
The assembly function can be described by a single vector loop. The function of 
the mechanism heavily depends on the pressure angle 1Φ . It furthermore defines 
the position B of the ball (1) in horizontal direction. (cf. Figure 5)  
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Figure 5: One way clutch assembly geometry and vectorial tolerance chain 

The tolerance loop reveals that the pressure angle is influences by the four dimen-
sions A, C, D, and E; whereas in general all variables are treated independently 
the variable C is dependent on D and vice versa, because the two dimensions are 
manufactured during the same process step (cf. Figure 5). The statistical moments 
of the dimensions as well as the key characteristic specification can be found in 
Table 2. It is assumed that the type of the distribution is normal: A normal distri-

bution with σ6 -range compared to tolerance  
6

iT
=σ . In general any other ratio 

or distribution type could be used for simulation. 
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Table 2: Input variable properties and assembly specification [GLANCY 1999] 
Input Variables  
Dimension Mean Standard Deviation  
A in mm 27.645 0.01666  
C in mm 11.43 0.00333  
D in mm 11.43 0.00333  
E in mm 50.8 0.00416  
Assembly Specification 
Dimension Nominal Lower limit Upper limit 

1Φ  in ° 7.0184 6.4184 7.6184 

B in mm 4.8105 4.4011 5.2195 
The pressure angle Φ  can be described by two linear dimension chains in x- and 
y-direction. The position of the ball (1) in x-direction can also be calculated easily 
using the following nonlinear equations: 
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   (2) 

4.2 Sampling Setup 
The system of equations was solved by sampling with MCS and LHS. To obtain a 
series of results the example problem was analysed at thirteen different sample 
sizes: 10; 20; 30; 40; 50; 100; 200; 500; 1000; 5000; 10000; 100000; 1000000. 
The blocks 2-4 in Figure 3 and Figure 4 were fully implemented in MATLAB in 
order to obtain automated results generation. The postprocessing was performed 
in MATLAB and Microsoft Excel.  
All calculations were performed on a personal computer with an Intel® Core™i7 
CPU Q720 @ 1.6 GHz and 6.0 GB RAM. 

4.3 Results and discussion 

4.3.1 Sampling of the input variables 
The application of the sampling strategies results in the following table, exempla-
rily shown for input A. Mean values and standard deviations can be compared in 
dependence of the amount of samples generated. It can be observed that LHS 
converges more rapidly in mean values than MCS. Furthermore can be observed 
that both strategies finally meet the desired mean value and standard deviation (at 
least at 100 samples, cf. Table 2 for given values of A). This is valid for variables 
C, D, E too. 
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Table 3: Mean value and standard deviation comparison for input A 
Samples A in mm A in mm A in mm A in mm 
 MCS Mean 

Value A in mm 
LHS Mean 
Value A in mm 

MCS Standard 
Deviation A in 
mm 

LHS Standard 
Deviation A in 
mm 

10 27.643728 27.644317 0.006606 0.015981 
20 27.643205 27.645086 0.016693 0.015959 
30 27.642065 27.644839 0.016899 0.016693 
40 27.642723 27.644695 0.018300 0.017235 
50 27.644847 27.644883 0.015788 0.016366 
100 27.643572 27.645034 0.017817 0.016797 
200 27.644987 27.644996 0.017396 0.016652 
500 27.646914 27.644989 0.015601 0.016646 
1000 27.645165 27.645000 0.017550 0.016690 
5000 27.645050 27.645001 0.016569 0.016658 
10000 27.644806 27.644999 0.016685 0.016660 
100000 27.644997 27.645000 0.016688 0.016660 
1000000 27.645012 27.645000 0.016682 0.016660 

This result is reflected too, considering and calculating the errors of mean and 
standard deviation in relation to the simulation result with 1 000 000 MC-samples. 
The result is shown in Figure 6 and Figure 7. 
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Figure 6: Error of mean values for input variable C 
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Figure 7: Error of standard deviation for input variable C 

4.3.2 Computation time 
During the performance of the calculations the computational effort was measured 
in form of time intervals which are required for sampling and the evaluation of the 
objective function. CPU-, RAM and file I/O operations were included in the time 
measurement. In order to avoid deviations caused by initialization issues the time 
measurement was repeated several times. The last run was used for the evaluation 
presented here. The following code shows the basic principle of time measure-
ment. 
Calculation time – Code Snippet 
for iCount =1:length(vSampleConfig) 
 %MCM Result and Calculation Time Measurement 
 tic 
 fNumeric(0,vSampleConfig (iCount),vMean,vStdDev,sFilenameMCM,1) 
 vTime(1) = vTime(1)+toc; 
 %LHS Result and Calculation Time Measurement 
 tic 
 fNumeric(1,vSampleConfig (iCount),vMean,vStdDev,sFilenameLHS,1) 
 vTime(2) = vTime(2)+toc; 
 fWriteTime(vTime); 
end 
Table 4 and Figure 8 show the results on computation time in MATLAB for 
tolerance simulation using MCS and LHS. 
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Table 4: Comparison of computation time for MCS and LHS 
Samples MCS Calcula-

tion Time in s 
LHS Calculation 
Time in s 

10 0,017475 0,019924 
20 0,010789 0,011478 
30 0,017348 0,012995 
40 0,021800 0,016701 
50 0,027425 0,025100 
100 0,040457 0,038246 
200 0,079197 0,072978 
500 0,219715 0,178774 
1000 0,395009 0,346138 
5000 1,701156 1,709271 
10000 3,418460 3,326363 
100000 33,226791 33,224203 
1000000 335,333669 337,462984 
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Figure 8: Calculation time comparison 

4.3.3 Accuracy of the results from MCS and LHS 
The calculation results for the functional relationship are based on the evaluation 
of equation 2. The MATLAB code for the relationship is an external function 
which is called by MCS and LHS likewise. 
Functional Relationship – Code Snippet 
%vRatio = ((A+C)/(E-D)) 
 vRatio = (mX(:,1)+mX(:,2))./(mX(:,4)-mX(:,3)); 
 PHI1 = zeros(size(vRatio)); 
for iCount = 1:length(vRatio)  
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        %PHI1=acos((A+C)/(E-D)) 
        PHI1(iCount)=acos(vRatio(iCount)); 
end 
%B=E*sin(PHI1)-D*sin(PHI1) 
B=mX(:,4).*sin(PHI1)-mX(:,3).*sin(PHI1); 
 
Table 5 shows the output for pressure angle 1Φ  which is comparable to the results 
gained by [GLANCY 1999] (cf. Table 6). Thus the basic calculations are valid. 
Using LHS sampling 200 runs are sufficient to fit the reference value already. 

Table 5: Mean value and standard deviation comparison for output  1Φ
Samples MCS Mean 

Value  1Φ
in ° 

LHS Mean 
Value 1Φ  
in ° 

MCS Standard 
Deviation 1Φ   
in ° 

LHS Standard 
Deviation   1Φ
in ° 

10 7,029528 7,016808 0,094011 0,248979 
20 7,040783 7,014244 0,194486 0,193276 
30 7,069954 7,017303 0,197701 0,205584 
40 7,028787 7,016215 0,220048 0,227451 
50 7,014058 7,016044 0,196949 0,218138 
100 7,023337 7,013887 0,224252 0,235550 
200 7,001659 7,014966 0,224821 0,224955 
500 6,991726 7,014906 0,202431 0,225054 
1000 7,011048 7,014910 0,221809 0,220332 
5000 7,014911 7,015014 0,211620 0,217673 
10000 7,014916 7,014966 0,211054 0,219663 
100000 7,016755 7,014959 0,212312 0,219597 
1000000 7,015027 7,014962 0,212224 0,219483 
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Figure 9: Error of mean value for output variable 1Φ  
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Figure 9 and Figure 10 reflect the trend for pressure angle 1Φ  too, considering 
and calculating the errors of mean and standard deviation based on the simulation 
compared to the particular reference result [GLANCY 1999] (cf. Table 6). 
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Figure 10: Error of standard deviation for output variable  1Φ

 
Thus B resembles a derived value, Figure 11 and Figure 12 reveal the identical 
behaviour for B that can be observed for pressure angle 1Φ . Again the errors of 
mean and standard deviation obtained from MCS- and LHS-simulation are calcu-
lated related to the particular reference result [GLANCY 1999] (cf. Table 6). 
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Figure 11: Error of mean value for output variable B 
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Figure 12: Error of standard deviation for output variable B 

Table 6: Second-Order-Tolerance-Analysis (SOTA) Reference Result [Glancy 
1999]. 

Method 
1Φ   

 
in ° 

Standard  
Deviation 1Φ   
in ° 

B  
 
in mm 

Standard  
Deviation B  
in mm 

SOTA 7,014968 0,219346 4,808204 0,150720193 
 

5 Conclusion 

The objective of the paper was to outline the basics of two selected sampling 
methods and to perform a quantitative comparison. In a case study of a nonlinear 
tolerance analysis problem, advantages and disadvantages of Monte-Carlo Simu-
lation and Latin Hypercube Sampling are identified.  
The sampling principles and the nonlinear relationship were implemented in 
MATLAB in order to obtain tolerance analysis results for a one way clutch as-
sembly, which is known as benchmark in computer aided tolerancing. The results 
were validated also by comparing them to published results from [GLANCY 1999].  
For this paper some research questions were derived (cf. chapter 4, p. 6), which 
can be answered here finally: 
Question: Does the accuracy of the sampling of input parameters differ?  
Answer: Using a small amount of samples, the accuracy of mean / standard de-
viation differs up to 0.012 % / 60%. This highlights, that there is need for caution 
setting up samplings. The sampling of the input has to be tested statistically al-
ready. Moreover it can be found, that LHS performs better, especially regarding 
mean values. 
Question: What is a suitable amount of samples for the evaluation of the case 
study mechanism?  
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Answer: The suitable amount of samples depends on a) the problem (not proved 
here) b) the criteria to be evaluated (which means: Are the observations focussed 
on the mean values or the standard deviations or even on higher statistical mo-
ments?) and c) on the admissible error. For this one way clutch tolerancing 
problem about 50 samples will be suitable for predicting the mean using LHS. In 
order to predict the standard deviation of the quality criteria observed ( , B) 
about 200 simulations have to be performed. 

1Φ

Question: Does the computation time differ significantly for the two methods 
focused here? 
Answer: Using modern tools like optiSLang and MATLAB no significant dispar-
ity concerning the setup time between the sampling strategies can be found. Thus 
the effort for generation and evaluation of samples is the same and there are no 
numeric disadvantages using LHS compared to MATLAB. Moreover the effort to 
determine reliable and accurate input distribution properties (mean, standard 
deviation, skewness, and kurtosis) is more time consuming than the numeric 
process in many cases in the opinion of the authors. 
Question: Do the sampling strategies provide accurate results?  
It can be derived from the data in chapter 4.3.3 that the quality criteria ( , B) 
can be predicted safely by choosing a sufficient amount of samples. The values 
obtained from this study perfectly fit the values from the benchmarking simula-
tions performed by [

1Φ

GLANCY 1999]. The necessary amount of samples is 
significantly smaller for LHS than the amount of samples using MCS. 
Finally it can be found from this study that Latin Hypercube Sampling is quite 
suitable for the use in tolerance calculation. Mean values and variances can be 
estimated using lesser samples compared to MCS reliably. Therefore LHS is 
proposed as suitable sampling strategy especially for time consuming numeric 
problems in tolerance analysis too. 
This work served and serves as a basis for further stochastic simulations of manu-
facturing processes, assembly processes and operating conditions of assemblies 
which are much more time consuming than the work presented here [STOCKINGER 
2010]. 
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