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Introduction

Spatial variation of structural properties lead to 
uncertainties in the structural performance

Slightly different variation of results in each node/element 
of the structural mesh

Large number of random variables, can be described as 
random field

For statistical analyses it is important to reduce the number 
of random variables

For engineering interpretation it is helpful to reduce noise 
and keep essential features
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Random field

Real-valued function in n-dimensional space

Mean value function

Auto-covariance function
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Ensemble

Different realizations of one-dimensional field
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Essential properties of random fields

Weak homogeneity

Isotropy
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Spectral decomposition

Fourier-type series expansion using deterministic basis 
functions φk and random coefficients ck

Karhunen-Loeve expansion based on eigenvalue 
decomposition of the auto-covariance function

Leads to orthogonal basis functions and uncorrelated 
coefficients (convenient, but not required) 6
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Spatially discrete formulation

Discrete values of random field

Spectral representation

Written as matrix-vector multiplication
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Types of random fields

Feature fields

Contain prominent features in all realizations

Strongly inhomogeneous

Noise fields

Consist of purely random values

May be considered to be homogeneous

Real field

Combination of feature field and noise field
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Choice of basis functions

Reduce number of random variables significantly

Improves statistical significance for small sample size

Reduces numerical effort in statistical analysis

Simplifies representation of input/output relations based 
on meta-models

Basis functions should be orthogonal

Reduces computational effort for projection/reduction

Random coefficients should be uncorrelated

Simplifies digital simulation of random fields
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Example - JPEG Data reduction

Basis functions are cosines with different wave lengths

Suitable for rectangular domains

Very efficient for smoothly varying data

Convergence difficulties near jumps in data (Gibb’s 
phenomenon)
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Smoothly varying data

Original (24x24)

Reduced
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Rapidly varying data

Original (24x24)

Reduced
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How to improve convergence?

Describe features independently from the noise

Map severely inhomogeneous field to a more 
“homogeneous” field

Generate standardized samples

Subtract mean value from original sample functions

Divide samples by standard deviations (if non-zero), set 
samples to zero otherwise
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Example: Hot spot

Random background value (constant)

One hot spot at random location in the vicinity of the 
center

Sample functions
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Statistics based on compressed data

Mean value

Standard deviation
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Standardization of data

map to a more “homogeneous” field (zero mean and 
constant standard deviation

represents the deviations from the mean in terms of basis 
functions

very helpful if the randomness expressed by the standard 
deviation is related to the mean (e.g. almost constant 
coefficient of variation)

can easily represent completely deterministic areas in a 
structure
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Standardized and reduced data

Mean value

Standard deviation
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Large structures

Large number of elements or nodes leads to an un-
manageable number of random variables

Essential to reduce number of random variables before 
application of random field methods

Suitable approach: represent random data by local averages

Averaging can be achieved

Mesh coarsening

Spatial smoothing using appropriate functions

Essential to maintain topological structure (required for 
physical interpretation)
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Smoothing

Original space

Standardized space

Project into a smoothed space (with 
correlated variables y)

Project back to standardized space

Project back to original space

Measure of loss of detail
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Principal component analysis

Further reduction of number of variables

Operates in smoothed space by applying eigenvalue 
decomposition, choose number of eigenvalues based on 
representation of total variance

Projection into reduced space with uncorrelated variables z

Projection back to smoothed space (this can also be used for 
Monte Carlo simulation)
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Variable spaces

Mapping from real 
space to standardized 
space is lossless

Mapping from 
standardized space to 
smoothed space is 
lossy

Mapping from 
smoothed space to 
reduced space is 
lossy
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Example - small structure

4826 elements

150 samples

Data show effective plastic strain
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Mean value

Standard deviation (COV = 300%)

Statistics from 150 samples
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Smoothing and reduction

100 basis vectors for smoothing

9 random variables for reduction (accuracy of variance: 
99%)

Standard deviation:
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Statistics in reduced space

Standard deviation due to individual random variables
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Variable 1

Variable 2

Variable 3

Variable 4



Example - larger structure

60.000 elements

data show thickness variation
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Sample functions
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Statistics using original data

Mean value

Standard deviation
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Statistics based on reduced data

Standardized, reduced to smoothed space of dimension N, 
reduced to M principal components

Mean value remains unchanged, standard deviation shows 
only small differences
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Original vs. simulation

One real sample from FE analysis 

one virtual sample based on pure statistical analysis
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Concluding remarks

Data-driven reduction of random fields can provide high 
levels of accuracy

Number of random variables can be significantly reduced

Essential to use data-independent spatial smoothing and 
data-oriented principal component analysis

New algorithms for spatial smoothing provide significant 
speed improvements

Reduced representation improves statistical significance and 
allows for correlation analysis

Reduced representation can be used to produce high-quality 
directly simulated random fields
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