

presented at the 7th Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library

Global sensitivity analysis of GDI nozzle design parameters using ANSYS workbench & OptisLang

Dr.-Ing. Junmei Shi, Ivan Krotow, Continental Automotive

Dr.-Ing. Johannes Einzinger, ANSYS

Agenda

- Motivation: GDI injection system for low emission
- Mathematical model & Simulation approach
- Workflow
- Results
- Summary

CO₂ Emission Targets for New Registrations – Automotive Industry

According to the European policy for CO₂ regarding new car registrations, the CO₂ targets have to be reached step by step on average from 2012 until 2015 as shown in the graph.

- The policy accepts an exceeding range in average of 35 % in 2012, 25 % in 2013 and 20 % in 2014.
- In 2015 first time the target of 120 g CO_2 has to be reached for new car registrations.
- In 2020 the standard will be reduced to 95 g CO₂.

Particle Emission Legislation EU 5/ EU 6 EU Time Scheduling

Injection pressure effect on soot emission

Ontinental 🟵

Injection pressure effect on CO2 emission

Mixture preparation is the key for emission reduction

- What are the most significant design parameters?
- How do they affect atomization & spray penetration?
- How much improvement potential does the current design have?
- What design concept can be useful for good atomization?
- How to deliver tailed nozzle for each individual engine?
- Systematic approach: global sensitivity analysis
- Physical understanding: local sensitivity analysis
- Virtual engineering: > 200 virtual nozzle prototypes analyzed
- Cross check: spray characterization, engine experiment vs. CFD

Design parameters investigation

Design parameter	Unit	Range
SPL X-position	[mm]	
SPL Angle α	[°]	
Rounding radius R	[µm]	
Hole diameter D	[mm]	
L over D	[-]	

Design benchmark:

L/D

- Sac height effect
- Injection hole position
- Injection hole diameter
- Inlet rounding
- Seat-sac variation
- Injection hole shape
- Needle shape

Examples of evaluation quantities:

- -Turbulence energy
- Injection velocity
- Vapour volume fraction
- Mass flow rate
- Discharge Coefficient
- Energy efficiency
- Needle force

Spray measurement and engine validation important !

Global sensitivity analysis allows to change all the input parameters simultaneously.

Stochastic sampling method: Latin Hypercube sampling for each design parameter over the total design space

Sensitivity analysis model: optiSLang Metal Model of Optimal Prognosis (MOP) for correlation analysis.

$$\bigcirc \text{Coefficient of Prognosis:} \quad \text{COP} = \left(\frac{\text{E}[Y_{Test} \cdot \hat{Y}_{Test}]}{\sigma_{Y_{Test}}\sigma_{\hat{Y}_{Test}}}\right)^2; \quad 0 \leq \text{COP} \leq 1.$$

CFD model

Inlet total pressure 101 bar

Outlet static pressure 1 bar

On-heptane:

ρ= 680 [kg/m3], μ = 3.885e-4 [Pa.s]

Rayleigh-Plesset cavitation model

k-omega SST turbulence model

2nd order spatial discretization

2nd time discretization

Workflow: CAE tool integration & process automation

13 / Dr. J. Shi / 04.11.2010 © Continental Automotive GmbH

Coupling optiSLang – ANSYS Workbench

	•			& Darameter Drop	ortios S	2	8	
	rojeci	L	· 👝				≊⁄ Settings Tree	
<u>م</u>	A So	cript_writer	🗧 \sub optiPlug.	Parameter			P parameter tree	18
• 🕈 – 🛉	<u>Έ</u> Ρε	arametrize_problem		name:	Spl_Angle		Parameter section	
		Problem File INPUTS OUTPL	ITS	type:	pure optimisation		Ŷ- Eii Input.dat	
- 1	K 🕞			value:	30		<pre>whole file</pre>	
	57 VI 28 E.			reference value:	30			
	Y EV	volutionary_algorithm		value type:	active			
و م	Ne 💆	areto_optimization		description:				
· • · '	📢 Pa	article_swarm_optimization			go to parameter		- LoD	
· ∳- (🎦 De	esign_of_experiments			3. 10 10 10 10			
		DoE		Location			output.dat	
-1	<u>له</u>	→ dantive resnonse surface		line offset: 1			robustness section	
	P O' b u	aaptive_response_sarrace		format:	64.1f"		reliability section	
	두 TVIC	eta_modeling		expandable:			objective section	
የ ር	🗶 Me	etamodel_of_Optimal_Prognosis 		Optimization			constraint section	
	<u> </u>	P MOP_new_Inputs_Outputs		lower bound:	15.0			
- · ·	🖫 Ro	obustness analysis		upper bound:	40.0			
- (🖲 Re	eliability analysis		optimization type	continuous			
		ahust design entimization			sample points			
17	inter anna anna anna anna anna anna anna an			Stochastic				
1	V Re	evaluate_results		distribution				
	<u> </u>	P Revaluate_new_Inputs_Outp	uts	mean value	-			
· - /	🔖 Re	esult_monitoring		standard deviatio	n -			
	Ŀp	P Results of MOP		variation coefficie	ent			
	Ľ			lower bound	-			
				keep fixed	standard deviation			
			A 111	Set As	Default OK Cancel			

Coupling optiSLang – ANSYS Workbench

Ontinental 😣

Turbulence kinetic energy @outlet [J/kg]

Injection velocity

Discharge Coefficient

Summary

- ANSYS workbench + optiSLang have been applied to design sensitivity analysis.
- Workflow has been successfully proved.
- The global sensitivity analysis has reached the following results:
 - Identified the most important influencing parameters
 - Worked out the improvement potential and direction
 - Significant product imporvement confirmed by OEMs & a number of inventions
- The predicted trends have been confirmed by spray and engine experiment results.
- A predictive methodology (trend) for GDI nozzle design analysis developed
- Understanding of atomization mechanism improved.

