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Abstract

This paper shows the application of reliability methods in the content of robust de-
sign optimization. Several reliability methods are presented and discussed. The conse-
quences of the proper treatment of stochastic uncertainties are demonstrated with the
aid of a simple structural example. As a result it is seen that the suggested reliability
methods help to define safety factors to compensate for unavoidable uncertainties in
the design optimization process.
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1 Introduction
Current developments in CAE very much focus on automated design improvements. This
can be achieved by implementing optimization techniques to increase the performance of
engineering products and systems. As it is well-known, optimization which is fine-tuned
to a particular set of operating conditions may lead to designs whose performance deteri-
orates considerably whenever the actual operating conditions change. This is called loss
of robustness. In order to cope with the unavoidable uncertainties in both operating con-
ditions as well as the manufacturing process itself, it is essential to introduce appropriate
robustness measures based on uncertainty analysis into the optimization process.

Due to its mature state of development it is very helpful to utilize probability theory in
conjunction with statistics to describe and quantify uncertainties. Uncertainties can enter
the optimization process in various forms as shown in Figs. 1.

Assume that the constraints are expressed in terms of functions g. The may be inter-
preted e.g. as safety margins which have to be positive with a sufficiently high probability.
The uncertainties of the constraints (which are typically the relevant uncertainties in struc-
tural applications) can be done by introducing conditions on

• characteristic values, typically chosen as ḡ+ kσg > 0, or

• failure probability, i.e. Prob[g ≤ 0] < Pacc
*Contact: Univ.Prof. Dr. Christian Bucher, Center of Mechanics and Structural Dynamics, Vienna Univer-

sity of Technology, Karlsplatz 13, E2063, A-1040 Vienna, Austria, E-Mail:christian.bucher@tuwien.ac.at
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Figure 1: Uncertainties in the optimization process, top: Manufacturing tolerances,
bottom: Uncertain operating conditions affecting constraint.

Here either the factor k or the acceptable failure probability Pacc must be chosen in order to
satisfy the safety requirements for the structure or system under investigation.

The following sections on probabilistic modeling and reliability theory closely follow
Bucher 2009a which contains a large body of additional material on the topics.

2 Probabilistic Modeling
2.1 Random vectors
In typical engineering applications the number of random variables can be fairly large. It
is conceptually helpful to assemble all these random variables Xk; k = 1 . . . n into a random
vector X:

X = [X1,X2, . . .Xn]
T (1)

For this vector, expected values can be defined in terms of expected values of all its compo-
nents. In this way, we obtain the mean value vector

X̄ = E[X] = [X̄1, X̄2, . . . X̄n]
T (2)

This definition applies the expectation operator (ensemble average) to each component of
X individually. The covariance matrix is defined by

CXX = E[(X− X̄)(X− X̄)T] (3)
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This definition means that the expectation operator is applied to all possible mixed prod-
ucts of the zero mean components (Xi − X̄i)(Xk − X̄k). As a consequence of this definition,
the covariance matrix CXX is obviously symmetric. In addition, it is non-negative definite
(i.e. it does not have any negative eigenvalues). Therefore, it can be factored in terms of a
Cholesky-decomposition

CXX = LLT (4)
in which L is a non-singular lower triangular matrix. The Cholesky factor L can be utilized
for a representation of the random variables Xi in terms of zero-mean uncorrelated random
variables Yi by applying a linear transfomation:

Y = L−1(X− X̄); X = LY+ X̄ (5)

We can easily prove that the mean value vector of Y is zero

E[Y] = E[L−1(X− X̄)] = L−1E[X− X̄] = 0 (6)

and that the components of Y are uncorrelated:

E[YYT] = CYY = E[L−1(X− X̄)(X− X̄)TL−1T]

= L−1LLTL−1T = I
→ E[Y2

i ] = 1 ∀i; E[YiYk] = 0 ∀i ̸= k
(7)

The dimensionless quantity

ρik =
E[(Xi − X̄i)(Xk − X̄k)]

σXiσXk

(8)

is called coefficient of correlation. Its value is bounded in the interval [−1, 1]. Note that the
matrix of correlation coefficients must be positive definite as well. This poses certain re-
strictions on the numerical values of ρik depending on the dimension of the random vector
X.

2.2 Joint probability density function models
Multi-dimensional Gaussian distribution

The pdf of jointly normally (Gaussian) distributed random variables (components of a ran-
dom vector X is given by

fX(x) =
1

(2π) n
2
√
detCXX

exp
[
−1
2(x− X̄)TC−1

XX(x− X̄)
]
; x ∈ Rn (9)

Independent random variables

If all random variables Xi aremutually independent, then the joint probability density func-
tion is given by the product of the individual probability density functions.

fX(x) =
n∏

i=1
fXi
(xi) (10)

This follows from the multiplication rule for independent events.
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Remarks:
1. Independent random variables are always uncorrelated. The reverse is not necessar-

ily true.

2. If the random variables Xi, i = 1 . . . n are jointly normally distributed and they are
pairwise uncorrelated, then they are pairwise independent.

Nataf-Model

The so-called Nataf -model (Nataf 1962; Liu and DerKiureghian 1986) describes the joint
probability density function of randomvariablesXi based on their individual (marginal) dis-
tributions and the covariances or coefficients of correlation ρik. The concept of this Gaussian
copula (Noh, Choi, and Du 2009) is to transform the original variables Xi to Gaussian vari-
ables Yi whose joint density is assumed to be multi-dimensional Gaussian. This model can
be realized in three steps:

1. Map all random variables Xi individually to normally distributed random variables Vi
with zero mean and unit standard deviation

{Xi; fXi
(xi)} ↔ {Vi;φ(vi)} (11)

which is accomplished by means of

Vi = Φ−1[FXi(Xi)] (12)

2. Assume a jointly normal distribution for all random variables Vi with the statistical
moments

E[Vi] = 0; E[V2
i ] = 1; E[ViVk] = ρ′ik (13)

Note that at this point, the correlation coefficient ρ′ik (which generally will be different
from ρik) is not yet known. The joint pdf for the components of the random vector V
is then

fV(v) =
1

(2π) n
2
√

detRVV
exp

(
−1
2v

TR−1
VVv
)

(14)

in which RVV denotes the matrix of all correlations ρ′ik. From this relation, it follows
that

fX(x) = fV[v(x)]
n∏

i=1

∣∣∣∣dxidvi

∣∣∣∣ = fV[v(x)]
n∏

i=1

fXi
(xi)

φ[vi(xi)]
(15)

3. Compute the correlation coefficients ρ′ik by solving

σxiσxjρik =

∞∫
−∞

∞∫
−∞

(xi − X̄i)(xk − X̄k)fXiXk
(xi, xk, ρ′ik) xixk (16)

This is usually achieved by iteration.

A known problem of the Nataf-model is that this iteration may lead to a non-positive-
definite matrix of correlation coefficients. In this case, this model is not applicable. A set
of semi-empirical formulas relating ρ and ρ′ based on numerical studies for various types
of random variables is given by Liu and DerKiureghian 1986.
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Example: two log-normally distributed random variables

Consider two log-normally distributed random variables X1,X2 with identical means X̄1 =
X̄2 = X̄ = 1 and identical standard deviations σ1 = σ2 = σ = 0.4. Assume further that the
two variables are correlated with a coefficient of correlation ρ. The individual variables are
readily mapped to standard Gaussian variables V1,V2 by means of

Vi = Φ−1[FXi(Xi)] = Φ−1Φ

(
log Xi

µ

s

)
=

1
s log Xi

µ
=

1
s log

(
Xi
√
X̄2 + σ2

X̄2

)
(17)

For the numerical values as given, this reduces to

Vi = 2.5957 · log(1.077 · Xi); Xi = 0.92848 · exp(0.38525Vi) (18)

The joint pdf can be derived as shown, e.g. in Noh, Choi, and Du 2009:

fX1,X2
(x1, x2) =

1
2πs1s2

√
1− ρ′2x1x2

· exp
[
−v21 − 2ρ′v1v2 + v22

2(1− ρ′2)

]
(19)

in which
vi =

log xi − logµi

si
; i = 1, 2 (20)

The coefficient of correlation ρ′ in v-space according to Eq. 16 is to be determined from

0.16 · ρ =

∞∫
−∞

∞∫
−∞

(x1 − 1)(x2 − 1)fX1X2
(x1, x2)x1x2 (21)

An explicit solution is given by Noh, Choi, and Du 2009

ρ′ =
log(1+ ρs1s2)√

log(1+ s21) log(1+ s22)
(22)

This relation is shown in Fig. 2 for s1 = s2 = 0.5. It can be seen that the difference
between ρ and ρ′ is very small for positive values. However, when ρ approaches the lower
limit of -1, there is no acceptable solution for ρ′ leading to a positive definite correlation
matrix. This effect is further increased by larger values of s1, s2. Hence, the Nataf model
ceases to function properly in this range. For a more specific example, assume a coefficient
of correlation ρ = 0.6. In this case, the correlation coefficient in Gaussian space according
to Eq. 22 becomes ρ′ = 0.6147. The contour lines of the joint probability density function are
shown in Fig. 3. Also shown in the same figure is the case of one variable chosen normal
and the second variable assumed log-normal.

3 Structural Reliability Methods
3.1 Definitions
Generally, failure (i.e. an undesired or unsafe state of the structure) is defined in terms of
a limit state function g(.), i.e. by the set F = {X : g(X)0}. Frequently, Z = g(X) is called
safety margin.
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Figure 2: Relation between original and adjusted correlation for two correlated log-normal
variables using the Nataf model
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Figure 3: Contour lines of joint probability density function for correlated random variables
based on the Nataf model. left: two lognormal variable; right: one normal, one lognormal
variable.

For the simple problem as shown in Fig. 4, the definition of the limit state function is
not unique, i.e. there are several ways of expressing the failure condition

F = {(F, L,Mpl) : FLMpl} = {(F, L,Mpl) : 1−
FL
Mpl

0} (23)

The failure probability is defined as the probability of the occurrence of F :

pf = Prob[{X : g(X)0}] (24)
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Figure 4: Simple structural system

This quantity is unique, i.e. not depending on the particular choice of the limit state func-
tion. The failure probability can be written in the form of a multi-dimensional integral

pf = Prob[g(X1,X2, . . .Xn)0] =
∫

· · ·
∫

g(X)≤0

fX(x)dx (25)

The computational challenge in determining the integral of Eq. 25 lies in evaluating
the limit state function g(x), which for non-linear systems usually requires an incremen-
tal/iterative numerical approach. In this context, it is essential to realize that the limit state
function g(x) serves the sole purpose of defining the bounds of integration in Eq. (25). As an
example, consider a 2-dimensional problem with standard normal random variables X1 and
X2, and a limit state function g(x1, x2) = 3−x1+x2. In Figure 5 the integrand of Eq. 25 in the
failure domain is displayed. It is clearly visible that only a very narrow region around the
so-called design point x∗ really contributes to the value of the integral, i.e., the probability
of failure P(F). Thismakes is difficult to locate integration points for numerical integration
procedures appropriately.

-5 -4 -3 -2 -1 0 1 2 3 4 5
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0
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Variable X1

Vari
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X 2
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Figure 5: Integrand for calculating the probability of failure for g(x1, x2) = 3− x1 − x2
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3.2 First Order - Second Moment Concept
The first-order second moment method aims at a representation of the limit state function
g(.) by a Taylor series and subsequent calculation of the statistical moments of the safety
margin Z.

g(x) = g(x0) +
n∑

i=1

∂g
∂xi

∣∣∣∣
x=x0

(xi − xi0)+

+
1
2

n∑
i=1

n∑
k=1

∂2g
∂xi∂xk

∣∣∣∣
x=x0

(xi − xi0)(xk − xk0) + . . .

(26)

Terminating the series after the quadratic terms yields

E[Z] = E[g(X)] = g(x0) +
n∑

i=1

∂g
∂xi

E[xi − xi0] +
1
2

n∑
i=1

n∑
k=1

∂2g
∂xi∂xk

E[(xi − xi0)(xk − xk0)] (27)

Terminating the Taylor series after the linear terms yields

E[Z] = E[g(X)] = g(x0) +
n∑

i=1

∂g
∂xi

E[xi − xi0] (28)

If the mean value vector X̄ is chosen as expansion point x0 for the Taylor series, then E[Z] =
g(x0) and the variance becomes

σ2
Z = E[(Z− Z̄)2] = E

[( n∑
i=1

∂g
∂xi

(Xi − X̄i)

)2]

=
n∑

i=1

n∑
k=1

∂g
∂xi

∂g
∂xk

E[(Xi − X̄i)(Xk − X̄k)]

(29)

Finally the distribution function FZ(z) is approximated by a normal distribution

FZ(z) = Φ

(
z− Z̄
σZ

)
(30)

Then we obtain the approximate result

pf = FZ(0) = Φ

(
− Z̄
σZ

)
(31)

Note that this result does not take into account the types of distributions of the basic vari-
ables. It also depends significantly on the choice of the expansion point for the Taylor-
series.

3.3 FORM - First Order Reliability Method
The FORM-Concept (Hasofer and Lind 1974) is based on a description of the reliability prob-
lem in standard Gaussian space. Hence transformations from correlated non-Gaussian vari-
ablesX to uncorrelated Gaussian variablesUwith zeromean and unit variance are required.
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This step is called Rosenblatt-transformation. Then a linearization in performed inu-space.
The expansion point u∗ is chosen such as tomaximize the pdf within the failure domain. Ge-
ometrically, this coincides with the point in the failure domain, having the minimum dis-
tanceβ from the origin. Froma safety engineering point of view, the pointx∗ corresponding
to u∗ is called design point.

This concept is especially useful in conjunction with the Nataf-model for the joint pdf of
X. In this case the Rosenblatt-transformation consists of the following steps:

1. Transform from correlated non-Gaussian variables Xi to correlated Gaussian variables
Yi

Yi = Φ−1[FXi(Xi)]; i = 1n (32)
These transformations can be carried out independently. The covariance matrix CYY
is calculated from CXX according to the rules of the Nataf-model (cf. section 2.2).

2. Transform from correlated Gaussian space to standard Gaussian space by means of

U = L−1Y (33)

in which L is calculated from the Cholesky-decomposition of CYY

CYY = LLT (34)

In total, this leads to a representation of the limit state function g(.) in terms of the
standardized Gaussian variables Ui

g(X) = g(X1,X2,Xn) = g[X1(U1,Un)Xn(U1,Un)] (35)

with

Xi = F−1
Xi

[
Φ

( n∑
k=1

LikUk

)]
(36)

From the geometrical interpretation of the expansion point u∗ in standard Gaussian space
it becomes quite clear that the calculation of the design point can be reduced to an opti-
mization problem

u∗ = argmin
(
1
2u

Tu
)
; subject to: g[x(u)] = 0 (37)

This leads to the Lagrange-function

L = 1
2u

Tu+ λg(u) → Min. (38)

Standard optimization procedures can be utilized to solve for the location of u∗. One of the
earliest methods is the so-called Rackwith-Fiessler algorithm (Rackwitz and Fiessler 1978).
This algorithm is a simple version of the SQP optimization procedure. In this procedure,
the objective function is replaced by a quadratic approximation and the constrain condi-
tions are linearized. In view of Lagrangian as given by Eq. 38 this means that the objective
function is unchanged whereas the constraint is replaced by the linearized version using
u = u0 + v

ĝ(u) = g(u0) +∇g(u0)
T(u− u0) = g(u0) +∇g(u0)

Tv (39)
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In this equation, u0 is an expansion point, usually chosen to be the current iterate. The
approximate Lagrangian

L̂ = 1
2u

Tu+ λĝ(u)

=
1
2v

Tv+ uT
0v+

1
2u

T
0u0 + λ

[
g(u0) +∇g(u0)

Tv
] (40)

is associated with the Kuhn-Tucker conditions

v+ u0 + λ∇g(u0) = 0
g(u0) +∇g(u0)

Tv = 0
(41)

This system of equations is solved by

λ =
g(u0)−∇g(u0)

Tu0

∇g(u0)T∇g(u0)
(42)

and
u0 + v = −λ∇g(u0) (43)

Then u0 is replaced by u = u0 + v and the iteration proceeds from Eq. 39 until convergence
of u0 to u∗. It is known that this simple version of the algorithm does not always converge,
hence more sophisticated optimization methods may be appropriate (e.g. NLPQL, Schit-
tkowski 1986).

Once the point u∗ is located, the exact limit state function g(u) is replaced by a linear
approximation ĝ(u) as shown in Fig. 6. Geometrically, it can easily be seen that ĝ(u) is

u1

u2

β

s1
g(u) = 0

ĝ(u) = 0
u∗

s2

Figure 6: Linearization required for first order reliability method

determined from
ĝ : −

n∑
i=1

ui
si
+ 1 = 0;

n∑
i=1

1
s2i

=
1
β2 (44)

The safety margin Z = −
∑n

i=1
Ui
si + 1 is normally distributed with the following statistical

moments
E[Z] = 1; σ2

Z =
n∑

i=1

n∑
k=1

E[UiUk]

sisk
=

n∑
i=1

E[U2
i ]

s2i
=

n∑
i=1

1
s2i

=
1
β2 (45)
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→ σZ =
1
β

(46)

From this, the probability of failure is easily determined to be

pf = Φ

(
− 1

1
β

)
= Φ(−β) (47)

This result is exact, if g(u) is actually linear.

4 Monte Carlo Simulation
4.1 Definitions and Basics
The definition of the failure probability as given in Eq. 25 can be written as an expected
value

pf =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
Ig(x1 . . . xn)fX1...Xn

(x1 . . . xn)dx1 . . . dxn (48)

in which Ig(x1 . . . xn) = 1 if g(x1 . . . xn) ≤ 0 and Ig(.) = 0 else.
In order to determine pf in principle all available statistical methods for estimation of

expected values are applicable. If m independent samples x(k) of the random vector X are
available then the estimator

p̄f =
1
m

m∑
k=1

Ig(x(k)) (49)

yields a consistent and unbiased estimate for pf.
The problem associatedwith this approach is this: For small values of pf and small values

of m the confidence of the estimate is very low. The variance σ2
p̄f of the estimate p̄f can be

determined from
σ2
p̄f =

pf
m −

p2f
m ≈

pf
m → σp̄f =

√
pf
m (50)

It is to be noted that the required numberm of simulations is independent of the dimen-
sion n of the problem!

4.2 Importance Sampling (Weighted Simulation)
4.2.1 General Concept

In order to reduce the standard deviation σp̄f of the estimator to the order of magnitude of
the probability of failure itself m must be in the range of m = 1

pf
. For values of pf in the

range of 10−6 this cannot be achieved if each evaluation of the limit state function requires
a complex structural analysis. Alternatively, strategies are employed which increase the
“hit-rate” by artificially producing more samples in the failure domain than should occur
according to the distribution functions. One way to approach this solution is the introduc-
tion of a positive weighting function hY(x) which can be interpreted as density function of
a random vector Y. Samples are taken according to hY(x).
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The probability of failure is then estimated from

p̄f =
1
m

m∑
k=1

fX(x)
hY(x)

Ig(x) = E

[
fX(x)
hY(x)

Ig(x)
]

(51)

From the estimation procedure as outlined it can be seen that the variance of the estimator
p̄f becomes

σ2
p̄f =

1
mE

[
fX(x)2
hY(x)2

Ig(x)
]

(52)

A useful choice of hY(x) should be based on minimizing σ2
p̄f . Ideally, the weighting func-

tion should reduce the sampling error to zero. However, this cannot be achieved in reality
since such a function must have the property

hY(x) =
{

1
pf
fX(x) g(x)0

0 g(x) > 0
(53)

This property requires the knowledge of pf which, of course, is unknown. Special updating
procedures such as adaptive sampling (Bucher 1988) can help to alleviate this problem.

4.2.2 Importance Sampling at the Design Point

Based on the previous FORM analysis it may be attempted to obtain a general importance
sampling concept. This can be accomplished in two steps:

1. Determine the design point x∗ as shown in the context of the FORM-procedure.

2. Choose a weighting function (sampling density) hY(x) with the statistical moments
E[Y] = x∗ and CYY = CXX in the following form (multi-dimensional Gaussian distribu-
tion, cf. Fig. 7)

hY(x) =
1

(2π) n
2
√
detCXX

exp
[
−1
2(x− x∗)TC−1

XX(x− x∗)
]

(54)

3. Perform random sampling and statistical estimation according to Eq. 51.

The efficiency of this concept depends on the geometrical shape of the limit state function.
In particular, limit state functions with high curvatures or almost circular shapes cannot
be covered very well.

It is also interesting to note that the concept of importance sampling can very well be
extended for application in the context of dynamic problems (first passage failure, Macke
and Bucher 2003).

4.2.3 Adaptive Sampling

As mentioned earlier, the “optimal” sampling density should satisfy the requirement

hY(x) = fX(x|x ∈ Df) (55)
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Figure 7: Original and importance sampling probability density functions

Here the failure domain Df is the set in which the limit state function is negative

Df = {x|g(x)0} (56)

This ideal condition cannot be met strictly. Yet it is possible to meet it in a second moment
sense, i.e. hY(x) can be chosen such that (Bucher 1988)

E[Y] = E[X|X ∈ Df] (57)

E[YYT] = E[XXT|X ∈ Df] (58)
In terms of these statisticalmoments, amulti-dimensional Gaussian distribution is uniquely
determined.

While, of course, this approach cannot be applied from the beginning without prior
knowledge, it is fairly easy to estimate E[X|X ∈ Df] and E[XXT|X ∈ Df] from a pilot simu-
lation (based on e.g. the knowledge of the design point or by using an increased sampling
standard deviation to increase the number of samples in the failure domain), and then to
adapt the sampling density according to these results.

For a one-dimensional reliability problem with a limit state function g(x) = β − x, the
optimal sampling density is compared to a Gaussian sampling density with the same first
and second moments as the optimal sampling density. Fig, 8 shows the results for β = 2 and
β = 4. It can clearly be seen that the samples will be concentrated in the immediate vicinity
of the design point located at x = β.

4.3 Directional Sampling
The basic idea is to simulate directions instead of points, and to solve analytically for the
probability of failure conditional on a certain direction. The formulation is based on a rep-
resentation of the limit state function in standard normal space (denoted by the random
vector U). Each point u in this space is written in the form of

u = ra (59)

in which r is the distance from the origin and a is a unit vector indicating the direction. This
implies transformation to n-dimensional spherical coordinates.
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Figure 8: Optimal and best possible Gaussian sampling density functions

Density Function in Spherical Coordinates

From fU(u) = 1
(2π)

n
2
exp

(
− 1

2uTu
)
we want to find the joint density fR,A(r, a) of distance R and

direction vector A.
1) fU(u) is rotationally symmetric, i.e. independent of a. This follows from

uTu = (ra)T(ra) = r2aTa = r2 (60)

and implies
fR|A(r|a) = fR(r) (61)

This in turn yields independence of R and A

fR,A(r, a) = fR|A(r|a)fA(a) = fR(r)fA(a) (62)

2) Due to rotational symmetry, fA(a) must have identical values for any a. Hence this
density is constant. Its value is the inverse of the surface area of the n-dimensional unit
sphere

fA(a) =
1
Sn

=
Γ(n2)

2π n
2

(63)

For n = 2 we have fA(a) =
Γ(1)
2π = 1

2π and for n = 3 we get fA(a) =
Γ(1.5)
2π

3
2

= 1
4π

3) The density of r =
√
uTu is determined from integrating the joint density of the

components of u over a sphere with radius r leading to

fR(r) = Snrn−1 1
π

n
2
exp

(
−r2

2

)
(64)

For the case n = 2 we obtain the density function

fR(r) = r exp
(
−r2

2

)
(65)

which describes a Rayleigh distribution.
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Probability of Failure

The failure probability P(F|a) conditional on a realization of the direction a can be deter-
mined analytically

u1

u2

a

g(u) = 0R∗

1

P(F|a)

Figure 9: Directional Sampling

P(F|a) =
∫ ∞

R∗(a)
fR|A(r|a)dr =

= Snrn−1 1
π

n
2
exp

(
−r2

2

)
dr = 1− χ2

n[R∗(a)2]
(66)

This is the cumulative Chi-Square-Distribution with n degrees of freedom.

Simulation Procedure

The directional sampling procedure can be summarized as follows:

1. Generate a sample uk according to an n-dimensional standard normal distribution.

2. Calculate the direction vector ak = uk
||uk||

.

3. Calculate critical distance R∗(ak) by solving g[R∗(ak)a] = 0. This step may involve
substantial computational effort since here the limit state functionmust be evaluated
several time, e.g. within a bisection procedure.

4. Determine conditional failure probability P(F|a) = 1− χ2
n[R∗(ak)2].

5. Repeat above steps with k → k+ 1.

The method works optimally if the limit state function is circular. In this special case, one
single sample yields the exact result.
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4.4 Asymptotic Sampling
This relatively new approach has been presented in (Bucher 2009b; Bucher 2009a). It relies
on the asymptotic behavior of the failure probability in n-dimensional i.i.d Gaussian space
as the standard deviation σ of the variables and hence the failure probability PF approaches
zero (see Breitung 1984). Consider a (possibly highly nonlinear) limit state function g(X) in
which g < 0 denotes failure. Let σ be the standard deviation of the i.i.d. Gaussian variables
Xk, k = 1 . . . n. We are going to determine the functional dependence of the generalized
safety index β on the standard deviation σ by using an appropriate sampling technique.
This is aided by some analytical considerations involving limit cases.

First, we study the case of a linear limit state function. This problem can always be
reduced to a single variable by an appropriate coordinate transformation. Hence the safety
index β(σ) is simply given by

β(σ) =
β(1)
σ

(67)

in which β(1) is the safety index evaluated for σ = 1. Introducing the scale variable f = 1
σ

we obtain the linear relation
β(f) = f · β(1) (68)

This means that in order to obtain a good estimate for β(1), we can compute the safety
index for a larger value of σ (corresponding to a smaller value of the scale f) using Monte
Carlo simulation and then simply extrapolate by multiplying the obtained result with f (i.e.
divide by σ).

The concept of asymptotic sampling when applied to general cases utilizes the asymp-
totic behavior of the safety index β by applying an extrapolation technique. Here the (as-
sumed) functional dependence for β is chosen as

β = A · f+ B
f (69)

This choice is motivated in order to ensure asymptotically linear behavior as f → ∞ (which
is equivalent to the liming case σ → 0). The coefficients A and B are conveniently deter-
mined from a least-squares fit using Monte Carlo estimates of β for different values of f
(typically for values of f < 1) as support points. For this fitting process, Eq. 69 is rewritten
in terms of a scaled safety index as

β

f = A+
B
f 2 (70)

This is illustrated qualitatively in Fig. 10.
Onemajor advantage of this approach is its independence of the dimensionality. The ac-

curacy is governed only by the relation between the number of samples and the probability
of failure as well as the particular geometry of the limit state surface g(u) = 0.

In this context it is essential to use a samplingmethodwhichprovides very stable results.
One obvious choice is Latin Hypercube Sampling (LHS) (Imam and Conover 1982; Florian
1992). Alternatively, pseudo-random sequences with low discrepancy (Niederreiter 1992;
Sobol and Asotsky 2003) can be utilized. Algorithms for randomized Sobol sequences are
discussed e.g. in Bratley and Fox 1988 and Hong and Hickernell 2003.
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Figure 10: Basic concept of Asymptotic Sampling

High-dimensional Linear Problem

This example serves as a test case to demonstrate the independence of the dimensionality.
The limit state function is

g(X) = 5
√
n−

n∑
k=1

Xk (71)

in which n is the number of random variables. All random variables are i.i.d. standard Gaus-
sian. The problemhas a safety index of β = 5 or PF = 3·10−7, independent of n. Table 1 shows
the mean values and standard deviations of the safety index as computed from asymptotic
sampling (20 repetitions with 1000 Monte Carlo samples each) for different dimension n. It

Table 1: Statistics of estimated safety index for high-dimensional linear problem
n β̄ σβ

10 4.95 0.26
100 4.94 0.22

1000 4.95 0.24
10000 4.94 0.22

100000 5.00 0.23

can be seen that the statistical uncertainty is completely independent of the dimension n,
even for very large numbers of random variables.

5 RDO Example
As an example, consider a simple Euler-Bernoulli beamwith rectangular cross section (b×h)
and length L as shown in Fig. 11. The beam is simply supported at both ends and has an
additional horizontal support in mid-span. It is assumed to carry an ideally centered axial
load F. There are two buckling modes, i.e. in the vertical plane and perpendicular to it. The
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Figure 11: Euler-Bernoulli beam under axial load

in-plane buckling is determined by the critical load

Fin =
π2bh3

12L2 (72)

and the out-of-plane buckling is determined by the critical load

Fout =
π2b3h
3L2 (73)

Note that out of plane the buckling length is equal to half the beam length. Assume that the
total mass of the beam should be minimized under the constraint that the critical load in
eithermode does not become smaller than the applied load F. This constrained optimization
problem is solved for the numerical values of E = 210 GPa and L = 4 m as well as F = 10 MN.
The objective function together with the constraints is shown in Fig. 12. The deterministic
optimum is located at the point where both critical loads are just reached, i.e. at b∗ = 0.1037
m and h∗ = 0.2075 m.

In the next step we assume random properties for the width b and height h of the cross
section aswell as the applied load F (see Table 2). The optimizationnowuses themeanvalues
b̄ and h̄ as design variables. Depending on the probabilistic assessment method, different

Table 2: Statistical properties of random variables
Variable Mean value C.o.V. [%] Distribution

b b̄ 5 Normal
h h̄ 5 Normal
F 10 MN 0.3 Log-normal

optimal designs b̄∗ and h̄∗ are obtained. The methods to describe the uncertainty of the
safety margins as investigated are:

a) FOSM approach to approximate the mean value and standard deviation of the safety
margins g, constraint condition ḡ+ 3σg > 0.

b) Monte Carlo simulation to estimate mean value and standard deviation of the safety
margins g, constraint condition ḡ+ 3σg > 0.
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Figure 12: Deterministic optimization problem

c) FORM reliability analysis, constraint condition Prob[g ≤ 0] < 10−5.

d) FORM reliability analysis, constraint condition Prob[g ≤ 0] < 10−6.

The results from these 4 different approaches are shown in Fig. 13 and compared to the de-
terministic optimization result. Table 3 shows the numerical values of the optimal designs
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Figure 13: Robust design optimization problem

for these cases. It can clearly be seen that the method chosen and the level of safety applied
can affect the design substantially. The increase in total weight from a deterministic deign
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without any safety factors to a probabilistic design with a safety level of 0.999999 amounts
to almost 220% (i.e. more than doubles the weight).

Table 3: Robust optimization results
Case b∗ [m] h̄∗ [m] Ā [m2] Increase [%]

Deterministic 0.104 0.208 0.02152 100
a 0.125 0.250 0.03118 145
b 0.130 0.260 0.03381 157
c 0.147 0.295 0.04343 202
d 0.154 0.306 0.04712 219

6 Concluding Remarks
The question of uncertainties in the design optimization process naturally leads to the ques-
tion of design robustness. In order to incorporate robustness analysis into the automated
design process it is essential to utilize appropriate stochastic analysis. For problems in-
volving safety constraints, usually reliability analysis is the suitable choice. Unfortunately,
reliability or failure analysis is computationally very expensive. Therefore, the choice of
appropriate methods is essential for the success of the RDO approach. This may include
the utilization of approximations to the system response e.g. as available in the Response
Surface Method.

The major benefit of using a full probabilistic RDO approach lies in the rational assess-
ment and quantification of the ”safety factors” required to achieve a target safety level.
Obviously, the best procedure is to incorporate the reliability analysis fully into the design
optimization loop. In this way, robustness of the final design can be automatically guaran-
teed.
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