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1 Introduction

Optimization and robustness analysis have become important tools for the virtual devel-
opment of industrial products. In parametric optimization, the optimization variables are
systematically modified by mathematical algorithms in order to get an improvement of
an existing design or to find a global optimum. The design variables are defined by their
lower and upper bounds or by several possible discrete values. In real world industrial
optimization problems, the number of design variables can often be very large. Unfortu-
nately, the efficiency of mathematical optimization algorithms decreases with increasing
number of design variables. For this reason, several methods are limited to a moderate
number of variables, such as gradient based and Adaptive Response Surface Methods.
With the help of sensitivity analysis the designer identifies the variables which contribute
most to a possible improvement of the optimization goal. Based on this identification, the
number of design variables may be dramatically reduced and an efficient optimization can
be performed. Additional to the information regarding important variables, sensitivity
analysis may help to decide, if the optimization problem is formulated appropriately and
if the numerical CAE solver behaves as expected.

By definition, sensitivity analysis is the study of how the uncertainty in the output of a
model can be apportioned, qualitatively or quantitatively, to different sources of variation
in the input of a model (Saltelli et al. 2000). Since robustness analysis investigates the
influence of the input variation on the variation of the model outputs, sensitivity analysis
can directly be applied as a post-processing tool to analyze the contribution of each input
variable to the scatter of each model response. In order to quantify this contribution,
variance based methods are very suitable. With these methods, discussed in this paper,
the proportion of the output variance, which is caused by an random input variable, is
directly quantified.

For optiSLang robustness analysis, the scattering input variables are defined as random
variables. This means that for each scattering input a distribution type including mean
value and variance is specified. Additionally, dependencies between the inputs can be
formulated in terms of linear correlations. The model output variation is estimated by
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random sampling. The estimated variation and the sensitivity measures are strongly
influenced by the chosen variation of the input variables.

Variance based sensitivity analysis is also very suitable as an optimization pre-processing
tool. By representing continuous optimization variables by uniform distributions without
variable interactions, variance based sensitivity analysis quantifies the contribution of the
optimization variables to a possible improvement of the model responses. In contrast
to local derivative based sensitivity methods, the variance based approach quantifies the
contribution with respect to the defined variable ranges.

Unfortunately, sufficiently accurate variance based methods require huge numerical
effort due to the large number of simulation runs. Therefore, often meta-models are
used to represent the model responses surrogate functions in terms of the model inputs.
However, many meta-model approaches exist and it is often not clear which one is most
suitable for which problem (Roos et al. 2007). Another disadvantage of meta-modeling
is its limitation to a small number of input variables. Due to the curse of dimensionality
the approximation quality decreases for all meta-model types dramatically with increas-
ing dimension. As a result, an enormous number of samples is necessary to represent
high-dimensional problems with sufficient accuracy. In order to overcome these problems,
Dynardo developed the Metamodel of Optimal Prognosis (Most and Will 2008). In this
approach the optimal input variable subspace together with the optimal meta-model ap-
proach are determined with help of an objective and model independent quality measure,
the Coefficient of Prognosis. In the following paper the necessity of such a procedure is
explained by discussing other existing methods for sensitivity analysis. After presenting
the MOP concept in detail, the strength of this approach is clarified by a comparison with
very common meta-model approaches such as Kriging and neural networks. Finally, an
industrial application is given, where the benefit of the MOP is illustrated.

2 Scanning the space of input variables

In order to perform a global sensitivity analysis, the space of the input variables, which
is either the design or the random space, has to be scanned by discrete realizations.
Each realization is one set of values belonging to the specified inputs. For each set of
values the CAE model is a black box solver and the model responses are evaluated. In
the case of random variables, only random sampling can be used to generate discrete
realizations. The sampling scheme needs to represent the specified variable distributions
and their dependencies with a sufficient accuracy. A very common approach is Monte
Carlo Simulation (MCS). However, if only a small number of samples is used, often clusters
and holes can be remarked in the MCS sampling set. More critical is the appearance
of undesired correlations between the input variables. These correlations may have a
significant influence on the estimated sensitivity measures. In order to overcome such
problems, optiSLang provides optimized Latin Hypercube Sampling (LHS), where the
input distributions and the specified input correlations are represented very accurately
even for a small number of samples. For the minimization of the undesired correlation
the method according to Iman and Conover (1982) is used.

As a design exploration for optimization problems deterministic Designs of Experi-
ments (DoE) are often applied (Myers and Montgomery 2002). These design schemes
are mainly based on a regular arrangement of the samples, as in the full factorial design.
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Figure 1: Dimension reduction for a nonlinear function with five inputs based on Latin
Hypercube Sampling (left) with 100 samples and full factorial design (right) with 35 = 243
samples

Generally the number of samples increases exponentially with increasing dimension. Frac-
tional factorial designs use only a part of the full factorial samples, however the number
of levels in each direction is limited to three. From our point of view, deterministic design
schemes have two main disadvantages compared to random sampling: They are limited
to a small number of variables due to the rapidly increasing number of required samples
when increasing the model dimension. Further a reduction of the number of inputs does
not improve the information gained from the samples, since only two or three levels are
used in each dimension. This is illustrated in Figure 1. In this figure, a nonlinear function
having one major and four almost unimportant variables is evaluated. Using the LHS,
the nonlinearity can be represented very well in the reduced space. In the case of the
full factorial design, which contains three levels in each directions, again only three posi-
tions are left in the reduced space and the dimension reduction does not allow a better
representation of the model response.

3 Variance based sensitivity analysis

3.1 First order and total effect sensitivity indices

Assuming a model with a scalar output Y as a function of a given set of m random input
parameters Xi

Y = f(X1, X2, . . . , Xm), (1)

the first order sensitivity measure was introduced as (Sobol’ 1993)

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
, (2)

where V (Y ) is the unconditional variance of the model output and VXi
(EX∼i

(Y |Xi)) is
named the variance of conditional expectation with X∼i denoting the matrix of all factors
but Xi. VXi

(EX∼i
(Y |Xi)) measures the first order effect of Xi on the model output.
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Since first order sensitivity indices measure only the decoupled influence of each vari-
able an extension for higher order coupling terms is necessary. Therefore total effect
sensitivity indices have been introduced (Homma and Saltelli 1996)

STi = 1 − VX∼i
(EXi

(Y |X∼i))

V (Y )
, (3)

where VX∼i
(EXi

(Y |X∼i)) measures the first order effect of X∼i on the model output which
does not contain any effect corresponding to Xi.

In order to estimate the first order and total sensitivity indices, a matrix combination
approach is very common (Saltelli et al. 2008). This approach calculates the conditional
variance for each variable with a new sampling set. In order to obtain a certain accuracy,
this procedure requires often more than 1000 samples for each estimated conditional
variance. Thus, for models with a large number of variables and time consuming solver
calls, this approach can not be applied efficiently.

3.2 Coefficient of Correlation

The coefficient of correlation is the standardized covariance between two random variables
X and Y

ρ(X, Y ) =
COV (X, Y )

σXσY

, (4)

where COV (X, Y ) is the covariance and σ is the standard deviation. This quantity,
known as the linear correlation coefficient, measures the strength and the direction of a
linear relationship between two variables. It can be estimated from a given sampling set
as follows

ρ(X, Y ) ≈ 1

N − 1

∑N
i=1(xi − µ̂X)(yi − µ̂Y )

σ̂X σ̂Y

, (5)

where N is the number of samples, xi and yi are the sample values, and µ̂X and σ̂X are
the estimates of the mean value and the standard deviation, respectively. The estimated
correlation coefficient becomes more inaccurate, as its value is closer to zero, which may
cause a wrong deselection of apparently unimportant variables.

If both variables have a strong positive correlation, the correlation coefficient is close
to one. For a strong negative correlation ρ is close to minus one. The squared correlation
coefficient can be interpreted as the first order sensitivity index by assuming a linear
dependence. The drawback of the linear correlation coefficient is its assumption of linear
dependence. Based on the estimated coefficients only, it is not possible to decide on the
validity of this assumption. In many industrial applications a linear dependence is not
the case. Correlation coefficients, which assume a higher order dependence or use rank
transformations (optiSLang 2011) solve this problem only partially. Additionally, often
interactions between the input variables are important. These interactions can not be
quantified with the linear and higher order correlation coefficients.

We can summarize that although the correlation coefficient can be simply estimated
from a single sampling set, it can only quantify first order effects with an assumed depen-
dence without any quality control of this assumption.
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4 Polynomial based sensitivity analysis

4.1 Polynomial regression

A commonly used approximation method is polynomial regression, where the model re-
sponse is generally approximated by a polynomial basis function

pT (x) =
[
1 x1 x2 x3 . . . x2

1 x2
2 x2

3 . . . x1x2 x1x3 . . . x2x3 . . .
]

(6)

of linear or quadratic order with or without coupling terms. The model output yi for a
given set xi of the input parameters X can be formulated as the sum of the approximated
value ŷi and an error term εi

y(xi) = ŷi(xi) + εi = pT (xi)β + εi, (7)

where β is a vector containing the unknown regression coefficients. These coefficients are
generally estimated from a given set of sampled support points by assuming independent
errors with equal variance at each point. By using a matrix notation the resulting least
squares solution reads

β̂ = (PTP)−1PTy, (8)

where P is a matrix containing the basis polynomials of the support point samples and
y is the vector of support point values.

4.2 Coefficient of Determination

The Coefficient of Determination (CoD) can be used to assess the approximation quality
of a polynomial regression. This measure is defined as the relative amount of variation
explained by the approximation (Montgomery and Runger 2003)

R2 =
SSR

SST

= 1 − SSE

SST

, 0 ≤ R2 ≤ 1, (9)

where SST is equivalent to the total variation, SSR represents the variation due to the
regression, and SSE quantifies the unexplained variation,

SST =
N∑

i=1

(yi − µY )2, SSR =
N∑

i=1

(ŷi − µŶ )2, SSE =
N∑

i=1

(yi − ŷi)
2. (10)

If the CoD is close to one, the polynomial approximation represents the support point
values with small errors. However, the polynomial model would fit exactly through the
support points, if their number is equivalent to the number of coefficients p. In this case,
the CoD would be equal to one, independent of the true approximation quality. In order
to penalize this over-fitting, the adjusted Coefficient of Determination was introduced
(Montgomery and Runger 2003)

R2
adj = 1 − N − 1

N − p
(1 −R2). (11)

However, the over-estimation of the approximation quality can not be avoided completely.
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Figure 2: Subspace plot of the investigated nonlinear function and convergence of the
CoD measures with increasing number of support points

In order to demonstrate this statement, an investigation of a nonlinear analytical
function is performed. The function reads in terms of five independent and uniformly
distributed input variables as follows

Y = 0.5X1 + X2 + 0.5X1X2 + 5.0 sin(X3) + 0.2X4 + 0.1X5, −π ≤ Xi ≤ π, (12)

where the contributions of the five inputs to the total variance are X1: 18.0%, X2: 30.6%,
X3: 64.3%, X4: 0.7%, X5: 0.2%. This means, that the three variables, X1, X2 and X3,
are the most important.

In Figure 2, the convergence of the standard CoD of linear and quadratic response
surfaces is shown, where a strong over-estimation of the approximation quality can be
noticed, when the number of samples is relatively small. Even the adjusted CoD shows a
similar behavior. This fact limits the CoD for cases where a large number of support points
compared to the number of polynomial coefficients is available. However, in industrial
applications, we are in our interest, this is often not the case. Another disadvantage of
the CoD measure is its limitation to polynomial regression. For other local approximation
models, like interpolating Kriging, this measure may be equal or close to one, however
the approximation quality is still poor.

4.3 Coefficient of Importance

The Coefficient of Importance (CoI) was developed by Dynardo to quantify the input
variable importance by using the CoD measure. Based on a polynomial model, including
all investigated variables, the CoI of a single variable Xi with respect to the response Y
is defined as follows

CoI(Xi, Y ) = CoIY,Xi
= R2

Y,X −R2
Y,X∼i, (13)

where R2
Y,X is the CoD of the full model including all terms of the variables in X and

R2
Y,X∼i is the CoD of the reduced model, where all linear, quadratic and interactions terms

belonging to Xi are removed from the polynomial basis. For both cases the same set of
sampling points is used. If a variable has low importance, its CoI is close to zero, since
the full and the reduced polynomial regression model have a similar quality. The CoI
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is equivalent to the explained variation with respect to a single input variable, since the
CoD quantifies the explained variation of the polynomial approximation. Thus it is an
estimate of the total effect sensitivity measure given in Equation 3. If the polynomial
model contains important interaction terms, the sum of the CoI values should be larger
than the CoD of the full model.

Since it is based on the CoD, the CoI is also limited to polynomial models. If the
total explained variation is over-estimated by the CoD, the CoI may also give a wrong
estimate of the variance contribution of the single variables. However, in contrast to
the Coefficient of Correlation, the CoI can handle linear and quadratic dependencies
including input variable interactions. Furthermore, an assessment of the suitability of
the polynomial basis is possible. Nevertheless, an estimate of the CoI values using a full
quadratic polynomial is often not possible because of the required large number of samples
for high dimensional problems.

5 Metamodel of Optimal Prognosis

5.1 Moving Least Squares approximation

In the Moving Least Squares (MLS) approximation (Lancaster and Salkauskas 1981)
a local character of the regression is obtained by introducing position dependent radial
weighting functions. MLS approximation can be understood as an extension of the poly-
nomial regression. Similarly the basis function can contain every type of function, but
generally only linear and quadratic terms are used. The approximation function is defined
as

ŷ(x) = pT (x)a(x), (14)

with changing (“moving”) coefficients a(x) in contrast to the constant global coefficients
of the polynomial regression. The final approximation function reads

ŷ(x) = pT (x)(PTW(x)P)−1PTW(x)y, (15)

where the diagonal matrix W(x) contains the weighting function values corresponding to
each support point. Distance depending weighting functions w = w(‖x− xi‖) have been
introduced. Mostly the well known Gaussian weighting function is used

wexp(‖x− xi‖) = exp

(
−‖x− xi‖2

α2D2

)
, (16)

where the influence radius D directly influences the approximation error. A suitable
choice of this quantity enables an efficient smoothing of noisy data. In Figure 3 the local
weighting principle and the smoothing effect is shown.

The MLS approach has the advantage that no training is necessary before an approx-
imation point can be evaluated. At each point only the weighting factors and the local
polynomial coefficients have to be calculated. This makes this method very fast compared
to other approximation techniques.
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Figure 3: Local weighting of support point values (left) and influence of the influence
radius D on the smoothing of the MLS approximation function (right)

5.2 Coefficient of Prognosis

In (Most and Will 2008) a model independent measure to assess the model quality was
proposed. This measure is the Coefficient of Prognosis (CoP), which is defined as follows

CoP = 1 − SSPrediction
E

SST

, (17)

where SSPrediction
E is the sum of squared prediction errors. These errors are estimated

based on cross validation. In the cross validation procedure, the set of support points is
mapped to q subsets. Then the approximation model is built by removing subset i from
the support points and approximating the subset model output ỹj using the remaining
point set. This means that the model quality is estimated only at these points, which are
not used to build the approximation model. Since the prediction error is used instead of
the fit, this approach applies to regression and even interpolation models.

The evaluation of the cross validation subsets, which are usually between 5 and 10
sets, causes additional numerical effort in order to calculate the CoP. Nevertheless, for
polynomial regression and Moving Least Squares, this additional effort is still quite small
since no complex training algorithm is required. For other meta-modeling approaches
as neural networks, Kriging and even Support Vector Regression, the time consuming
training algorithm has to be performed for every subset combination.

In Figure 4, the convergence of the CoP values of an MLS approximation of the
nonlinear coupled function given in Equation 12 is shown in comparison to the polynomial
CoD. The figure indicates that the CoP values are not over-estimating the approximation
quality as the CoD does for a small number of samples. The influence radius of the
MLS approximation is found by maximizing the CoP measure. As shown in Figure 4,
the convergence of the approximation quality is much better if only the three important
variables are used in the approximation model.

5.3 Metamodel of Optimal Prognosis

As shown in the previous section, the prediction quality of an approximation model may be
improved if unimportant variables are removed from the model. This idea is adopted in the

Weimar Optimization and Stochastic Days 8.0 – November 24–25, 2011

8



0.40

0.50

0.60

0.70

0.80

0.90

1.00

5002001005025

E
x
p
la

in
ed

 v
ar

ia
ti

o
n

Number of samples

CoD quad
CoDadj quad

CoP MLS 5Var
CoP MLS 3Var

Figure 4: Convergence of the CoP measure by using MLS approximation compared to
the polynomial CoD measure

Metamodel of Optimal Prognosis (MOP) proposed in (Most and Will 2008) which is based
on the search for the optimal input variable set and the most appropriate approximation
model (polynomial or MLS with linear or quadratic basis). Due to the model independence
and objectivity of the CoP measure, it is well suited to compare the different models in
the different subspaces. In Figure 5, the CoP values of all possible subspaces and all
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Figure 5: CoP values of different input variable combinations and approximation methods
obtained with the analytical nonlinear function

possible approximation models are shown for the analytical nonlinear function. The figure
indicates that there exists an optimal compromise between the available information,
the support points and the model complexity, the number of input variables. The MLS
approximation by using only the three major important variables has a significantly higher
CoP value than other combinations. However for more complex applications with many
input variables ,it is necessary to test a huge number of approximation models. In order
to decrease this effort, in (Most and Will 2008) advanced filter technologies are proposed,
which reduce the number of necessary model tests. Nevertheless, a large number of inputs
requires a very fast and reliable construction of the approximation model. For this reason
polynomials and MLS are preferred due to their fast evaluation.
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As a result of the MOP, we obtain an approximation model, which includes the im-
portant variables. Based on this meta-model, the total effect sensitivity indices, proposed
in section 3.1, are used to quantify the variable importance. The variance contribution
of a single input variable is quantified by the product of the CoP and the total effect
sensitivity index estimated from the approximation model

CoP (Xi) = CoP · SMOP
T (Xi). (18)

Since interactions between the input variables can be represented by the MOP approach,
they are considered automatically in the sensitivity indices. If the sum of the single
indices is significantly larger as the total CoP value, such interaction terms have significant
importance.

Additionally to the quantification of the variable importance, the MOP can be used to
visualize the dependencies in 2D and 3D subspaces. This helps the designer to understand
and to verify the solver model. In Figure 6 two subspace plots are shown for the MOP
of the analytical test function. In the X2-X3 and X1-X2 subspace plots the sinusoidal
function behavior and the coupling term can be observed. Additional parametric studies,

Figure 6: X2-X3 and X1-X2 subspace plots of the MOP of the nonlinear analytical function

such as global optimization can also be directly performed on the MOP. Nevertheless, a
single solver run should be used to verify the final result of such a parametric study or
optimization.

If the solver output contains unexplainable effects due to numerical accuracy problems,
the MOP approximation will smooth these noise effects as shown in Figure 7. If this is
the case, the CoP value of the MOP can be used to estimate the noise variation as the
shortcoming of the CoP to 100% explainability. However, the unexplained variation may
not be caused only by solver noise but also by a poor approximation quality. This problem
should be analyzed by increasing the number of samples in the case of low explainability.
If the CoP does not increase then it is an indicator for unexplainable solver behavior.
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6 Comparison with other approximation and selection methods

In this section we compare the MOP approach with other approximation and variable
selection methods. Before using advanced meta-models, we investigate the test case with
polynomials and Moving Least Squares. The analytical nonlinear function introduced in
section 4.2 is investigated by different numbers of input variables: only the three main
important variables, all five variables and additional variables without any contribution.
In Figure 8, the explained variation of the polynomial and MLS approximation obtained
with 100 support and 100 test points is shown with respect to the total number of variables.
Due to the so-called curse of dimensionality the approximation quality decreases rapidly
with increasing dimension. If the MOP is applied, only the important variables are
filtered out and the approximation is build in the optimal subspace. This leads to a high
approximation quality even for larger input dimensions.
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Figure 8: Approximation quality for polynomial and MLS approximation compared to
the MOP approach for the analytical function with increasing number of input variables

In the next step, we investigate the Kriging approximation, that is also known as
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Gaussian process model, which assumes a linear regression model similar to polynomial
regression

y(x) = pT (x)β + ε(x). (19)

Instead of independent errors, correlations between the error values are introduced by a
spatial correlation function similar to these in random fields

Cεε = σ2Ψ, Ψij = exp(−θ‖xi − xj‖2), (20)

where Cεε is the covariance matrix of the support points. The exponential correlation
function Ψ uses often the quadratic norm of the spatial distance.

A special case is called ordinary Kriging where only constant regression terms are used

y(x) = µ + ε(x). (21)

For this case the approximation function reads

ŷ(x) = µ̂ +ψ(x)TΨ−1(y − 1µ̂) = µ̂ +ψ(x)Tw (22)

The optimal correlation parameters are obtained generally by the maximum likelihood
approach or by cross validation. In our study we use the additional test data set, however,
the cross validation approach is more robust. The determination of the Kriging weights
w requires the inversion of the Gram matrix Ψ, which is very time consuming for a
large number of support points. For this reason, the cross validation procedure requires a
significantly higher numerical effort as for Kriging when compared to the MLS approach.
In Figure 9, the approximation quality of the ordinary Kriging approach is shown for the
test function. The significant decrease of the explained variation is similar to that of the
MLS approach.

0.50

0.60

0.70

0.80

0.90

1.00

20151053

E
x
p
la

in
ed

 v
ar

ia
ti

o
n
 i

n
 t

es
t 

d
at

a

Number of variables

Kriging
SVR
ANN
MOP

Figure 9: Approximation quality for Kriging, Support Vector Regression (SVR) and Arti-
ficial Neural Networks (ANN) compared to the MOP approach for the analytical function

Furthermore, Support Vector Regression (SVR) and Artificial Neural Networks (ANN)
are investigated. A detailed presentation of these methods can be found in (Roos et al.
2007). The obtained results are shown additionally in Figure 9, which show a similar
behavior as in Kriging and MLS. All the presented results show that the utilization of
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complex meta-model approaches will not overcome the curse of dimensionality. However,
the MOP enables the determination of the optimal variable subspace by using fast and
reliable approximation methods. In the most cases this variable reduction leads to a
significantly better approximation quality.

Finally the MOP approach is compared to the polynomial stepwise selection method.
In this approach polynomial coefficients are selected by different importance criteria in
order to detect the important variables. For the comparison, the state of the art imple-
mentation in (MATLAB 2010) is used. In this implementation important polynomial
coefficients are selected by F-test statistics based on a given polynomial degree. The
results given in Figure 10 indicate that the selection procedure works appropriately only
for a linear polynomial basis. By using a full quadratic basis, the number of selected
coefficients increases dramatically and the approximation quality decreases. This exam-
ple clarifies the power of the prediction based variable selection applied inside the MOP
approach.
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Figure 10: Approximation quality and variable selection of MATLAB’s stepwise regression
approach compared to the MOP results

7 Application in Noise Vibration Harshness analysis

In this example we apply the MOP approach in the framework of a robustness analysis in
automotive industry. Here we investigate an example presented in (Will et al. 2004) where
the Noise Vibration Harshness (NVH) is analyzed. Input parameters in this analysis are
46 sheet thicknesses of a car body which are varied within a +/- 20%. The sound pressure
levels at certain frequencies are the outputs which are investigated. In Figure 11, the car
body including the sheets with varying thicknesses are shown.

In order to find the important parameters with a small number of samples, which are
obtained from very time consuming finite element simulations, the application of MOP
is very attractive. Based on the MOP, the total effect sensitivity indices are calculated.
In table 1, the resulting indices of one sound pressure value including the approxima-
tion quality are given for different numbers of samples obtained from Latin Hypercube
Sampling. The table indicates that even for a very small number of samples compared
to the number of input variables the most important variables can be detected. When
increasing the number of samples, additional minor important inputs are detected and
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Figure 11: Car body with varied 46 sheets thicknesses and investigated sound pressure
level depending on the frequency

No. samples 100 200 400 600 800
CoP 90.9% 91.7% 95.7% 96.3% 96.9%
CoP (X5) - - 2.4% 2.3% 2.7%
CoP (X6) 6.0% 5.3 % 8.2% 8.3% 8.7%
CoP (X20) 41.3% 42.7% 42.3% 43.4% 42.2%
CoP (X23) 49.1% 48.0% 50.7% 51.0% 53.8%

Table 1: Convergence of approximation quality and total sensitivity indices for the most
important sheet thickness

considered in the optimal meta-model. The influence of coupling terms increases from
approximately 5% to 11% due to the better approximation quality. In figure 12 the ap-
proximation functions are shown in the subspace of the two most important variables X20

and X23. The figure indicates that with only 100 samples the general functional behavior
can be represented.

Due to the efficiency of the proposed sensitivity analysis even for nonlinear coherences
between inputs and outputs, the MOP approach is applied in several industrial projects
in cooperation with the German automotive industry.

Weimar Optimization and Stochastic Days 8.0 – November 24–25, 2011

14



Figure 12: Approximation function in the subspace of the two most important inputs
using 100 samples as supports (left) and 800 samples (right)

8 Summary

In this paper the Metamodel of Optimal Prognosis was presented. It was shown, that
in contrast to one-dimensional correlation coefficients and multi-dimensional polynomial
based sensitivity analysis, the MOP enables an efficient and reliable estimation of the
input variable importance. With the help of the objective quality measure CoP, the
MOP approach detects the subset of most important variables necessary for the optimal
approximation. The application of variable selection proves to be successful even for higher
dimensional problems where the full space approximations using advanced meta-models
show weak performance.

The determined optimal approximation function of one or more model responses can
be used further to get a first estimate of a global optimum. In the framework of robustness
analysis, the CoP value of the MOP is a useful estimate of possible solver noise and an
indicator for the usability of the investigated CAE model.
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