

From Topology Optimization to Robust Design Optimization

Dipl.-Ing. Markus Kellermeyer, CADFEM GmbH

ANSYS Competence Center FEM

<u>Outline</u>

1. Overview for Optimization in ANSYS Workbench

2. Project Description

3. Topology Optimization inside ANSYS Workbench

4. Robust Design Optimization with "optiSLang inside Workbench"

Overview for Optimization in ANSYS Workbench

Example for Topology Optimization: PowerWind GmbH

6 different loadcases were considered

by courtesy of PowerWind GmbH

🙊 LF6_Haubengewicht_rechts

Project Description

Create a design within a predefined space, that

- consists of beams with predefined cross section profiles
- where the beams do not exceed a predefined stress
- where the 1st frequency will be as large as possible
- where the structure will be a 2- σ design or higher due to appearing stresses

Topology Optimization

Steps to do topology optimization with <u>several</u> load cases:

Topology Optimization

- → Use Topology Optimization in Workbench
- \rightarrow Several load cases can be considered:
- \rightarrow a "one-click-solution"

Topology Optimization

Use topology idea, to create a manufacturable concept:

Parameterize the beam structure to allow different design constellations:

Parameter Manager		
splitl	=	0.64
split2	=	0.45
split3	=	0.75
split4	=	0.45
split5	=	0.65
split6	=	0.5

Topology Optimization

What's been done so far:

Robust Design Optimization with "optiSLang inside Workbench"

General Information:

Dynardo integrated "optiSLang" in ANSYS Workbench as an easy-touse tool.

It's called "optiSLang inside Workbench"

 \rightarrow It will be used for the "Robust Design Optimization" Workflow

Robust Design Optimization with "optiSLang inside Workbench"

Robust Design Optimization with "optiSLang inside Workbench"

General Workflow in ANSYS Workbench:

Robust Design Optimization with "optiSLang inside Workbench"

Step 1: Sensitivity Analysis - Setup

CADFEM

Robust Design Optimization with "optiSLang inside Workbench"

Stress:88 %Deformation:84 %Frequency:80 %

→ Important parameters:

split2, split3, split6

Robust Design Optimization with "optiSLang inside Workbench"

Step 2: First Optimization

seldom

frequentl

Robust Design Optimization with "optiSLang inside Workbench"

Step 2: First Optimization - Results

Stress = 40.87 < 41.5 (limit) Deformation = 0.169 < 0.17 (limit) 1^{st} Frequency = 27.9

Robust Design Optimization with "optiSLang inside Workbench"

Step 3: Robustness Evaluation with optimized design

The current sigma level for this design is: (41.5-41.16)/0.242 = 1.4

 \rightarrow not good enough

Robust Design Optimization with "optiSLang inside Workbench"

Step 4: Second Optimization with changed constraint

Define new stress constraint: $\sigma < 41.2$ d < 0.17frequency \rightarrow max

Stress = 39.0 < 41.5 Deformation = 0.168 < 0.17 1st Frequency = 27.8

Robust Design Optimization with "optiSLang inside Workbench"

Step 5: Robustness evaluation with second optimized design

Now, the sigma level is $> 2\sigma$

→ ok! optional: 3rd run with interpolated stress-

Conclusion

- \rightarrow Topology Optimization good for finding a concept
- → Parametric Optimization good to work with manufacturable parameters and in more than 1 physics domain
- → Robust Design Optimization can now be done inside Workbench in a very quick way: "optiSLang inside Workbench"
- \rightarrow easy-to-use tool, that safes time for the user:

Thanks for your attention!

