Corporate Research and Advance Engineering

Use of Metamodels for the Interdisciplinary Multi-Objective-Optimization (MOO)

> Roland Schirrmacher Christoph Kubala (ED/EST) Srinivasan Kandaswamy (RBEI/ENB) Dr. Holger Ulmer (ETAS)

We shape technology for the future of Bosch

Contents

- Scope of work
- Metamodels of Dynardo and Bosch/ETAS
- Applications
 - Rosenbrock-Function
 - Flexible bodies in MSC.Adams
 - Electric drives in FEMAG
 - Electric window lift in ABAQUS
- Software requirements for OptiSLang

→ Summary

Bosch

Scope of work

Requirements for MOO

- General tasks
 - Project management
 - Assignment of parts
 - Simulation data management
 - Requirements engineering
 - Technical tasks

Technical tasks

- Automatic built-up of parametric models (CAD, Morphing, CAE-Scripting)
- Automatic results evaluation (ETK, Python, Matlab, CAE-Scripting)
- Performing optimization using an appropriate approach/algorithm
- Selection of the optimal design
- → Discrepancy
 - Minimum number of design evaluations more than 5000
 - Limited availability of time, hardware and software licences

CR/ARH2-Schirrmacher | 29/08/2011 | © Robert Bosch GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

3

Bosch

Scope of work

Costs-Benefit of parametric studies of CAE-Models

Scope of work

125

5

Bosch

1886-2011

Possible usage of Metamodels

Use of Metamodels for the MOO of CAE-Applications

Contents

Scope of work

Metamodels of Dynardo and Bosch/ETAS

Applications

- Rosenbrock-Function
- Flexible bodies in MSC.Adams
- Electric drives in FEMAG
- Electric window lift in ABAQUS
- Software requirements for OptiSLang

→ Summary

Metamodels of Dynardo and Bosch

MOP (Dynardo)

- Metamodels
 - Polynomial least square approximtaion (lin/quad)
 - Advanced moving least square approximation

- → Expenditure
 - Design of Experiment/Simulation using CAE-Models
 - Calculation of the Metamodels
- → Results
 - Best mathematical approximation for each response variable
 - List of important designvariables for each responsevariable
 - Error estimation by
 - Coefficient of Optimal Prognosis (COP)
 - R², R_{adj}², RMSE, ..., r_{max}, r_{mean}, ..
 - Usage for optimization directly in OptiSLang, mopsolver.exe, mopsolver.dll

Metamodels of Dynardo and Bosch

ASCMO (Bosch/ETAS)

- Metamodels
 - Statistical machine learning method
- → Expenditure
 - Design of Experiment/Simulation using CAE-Models
 - Calculation of the Metamodels
- → Result
 - Mathematical description between each designvariable
 and each responsevariable
 - Error estimation
 - True prediction plot
 - Sigma-Plot
 - R², RMSE
 - Error over training data size
 - Usage for optimization by export as Python-Code

CR/ARH2-Schirrmacher | 29/08/2011 | © Robert Bosch GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Bosch

Use of Metamodels for the MOO of CAE-Applications

Contents

- Scope of work
- Metamodels of Dynardo and Bosch/ETAS

Applications

- Rosenbrock-Function
- Flexible bodies in MSC.Adams
- Electric drives in FEMAG
- Electric window lift in ABAQUS
- Software requirements for OptiSLang

→ Summary

Rosenbrock-Function

Function Limits Optimum Starting point DoE f(x,y)=(1-x²)+100(y-x²)² -2<x<2; -1<y<3 x=1, y=1, f(1,1)=0 (0,0) 500 Designs using LHS

500

Measured y

1000

Prediction y

2000

Outlier: 1

1500

MOP

Applications

Bosch

886-2011

Comparison of error between MOP and ASCMO

	OptiSLang	OptiSLang	OptiSLang	
	using Pythoncode	using MOP	using ASCMO	
NLPQL	x = 0.99680	x = 0.24817	x = 1.01843	
	y = 0.99362	y = 0.11288	y = 1.03698	
	f(x,y) = 1.018e-05	f(x,y) = 2.46806	f(x,y) = -0.03792	
	cpu = 106 sec	cpu = 23 sec	cpu = 240 sec	
Evolutionary Algorithm	x = 0.98408 y = 0.99093 f(x,y) = 5.4e-05 cpu = 54000 sec	x = 1.71485 y = 3.00000 f(x,y) = -2.70721 cpu = 4800 sec	x = 1.11760 y = 1.05300 f(x,y) = -0.027984 cpu = 27000 sec	
Problems	offending command	Bad approximation	offending command at	
	at file open after	f(0.248,0.112) = 0.8283	file open after 12946	
	25155 designs	f(1.71485,3.0) = 0.8625	designs	

Applications

Flexible bodies in MSC.Adams

 Task: Modification of 5 housing stiffnesses (elasticity modul E) in order to improve the vibrations

- Analysis
 - Substructure generation in ABAQUS
 - Generation of MNF-File
 - Multi-Body-Simulation in Adams

- → Results:
 - Stiffness and mass matrix of the substructure as a function of the 5 elasticity moduli
- Metamodels (Training/Test)
 - 26/14, 80/40

Flexible bodies in MSC.Adams

Result of Metamodels (MOP)

- Coefficient of Optimal Prognosis
 - High COP for static dofs
 - Mostly very low COP for modal dofs

Bosch

Metamodel for different numbers of design variables

Applications

Electric drives in FEMAG

- Task: Modification of 14 geometric entities of the housing and the magnets in order to modify 27 electric properties of the electric drive
- Analysis
 - Electrodynamic simulation in FEMAG
- Results
 - Electric properties (current, forces,...)
 - Geometric properties (inertia, mass)
- Metamodels (Training/Test)
 - 200/100, 500/200
 - 67/33, 134/66, 335/165

Electric drives in FEMAG

Approximation examples (MOP)

Good approximation for ZG02 (torque) • smooth function

• COP 0.99

Bad approximation for ZG04 (peak-peak of torque dynamics)

- strongly nonlinear function
- COP 0.67

Bosch 1886-2011

125

15

Electric drives in FEMAG

Convergence (MOP)

- Coefficient of Optimal Prognosis
 - Minimum value is 0.64
 - Partly large changes
 - No change between 500 and 700 (500/200) designs
 - Partly no convergence to 2 maximum value

- Number of Important Parameters
 - Relativly constant values
 - Constant COP does not mean

าt NIP

Number of Important Paran

6 5

3

2

100

200

300

400

Number of Designs

Bosch

16

600

700

500

Electric drives in FEMAG

Comparison of error between MOP and ASCMO

- The relative RMSE of ASCMO is mostly smaller than MOP.
- Global properties like inertia, torque,.. have a small error.
- Peak-Peak-Values of dynamic properties have a higher error.

Applications

Electric window lift in ABAQUS

- Task: Modification of height and width of 8 ribs of the housing in order to modify static stress distribution and dynamic reaction forces.
- Analysis
 - Structural mechanics in ABAQUS
- → Results
 - Max. stress at ribs and mountings
 - Frequency of first bending mode
 - Maximum and integral value of dynamic reaction forces
- Metamodels (Training/Test)
 - 300/150

Bosch

Electric window lift in ABAQUS

reaction forces.

Bosch

19

Coefficient of Prognosis (300 training / 150 test)

→	Max. stress at the inne	er part and	D		005
	the second second	L. ¹ L.	Responsevariable		COP
	the mountings have a	nign	Max. stress at inner pa	art	0.21
			Max. stress at mounting 1		0.71
	approximation error.		<u>ntir</u>	ng 2	0.38
				ng 3	0.48
		which typ			0.97
		VVIIIOI	riphles -		0.83
→	Max. stress at mo	ance Va	Manice -		0.93
		SD0115C	-		0.92
	the frequency of t	d wh	ich		0.92
		and wir			0.90
	mode can be appi		stical		0.95
		mathemo	allea		0.84
→	well.	maine	and have	lode	0.94
		formati	0112 1121	equency range 1	0.80
	tr	ansion	more?	frequency range 1	0.86
	Integral reaction for		eriuis.	quency range 2	0.67
	integral reaction for	high or ion	eaction force ورجو	in frequency range 2	0.92
	better COP than ma				

=	too low COP
=	acceptable COP
=	good COP

Electric window lift in ABAQUS

125

20

Bosch

1886-2011

Comparison of error between MOP and ASCMO

Electric window lift in ABAQUS

Pareto-Optimization

- → Objectives:
 - Integral of total reaction forces of two frequency ranges.
- → Constraints:
 - Lower limit for frequency of first bending mode
 - Stress limits for ribs and mouting points
- → Solver:

Bosch

- ASCMO for optimization
- ABAQUS for re-calculation of optimal designs

Use of Metamodels for the MOO of CAE-Applications

Contents

- → Scope of work
- → Metamodels of Dynardo and Bosch/ETAS
- → Applications
 - Rosenbrock-Function
 - Flexible bodies in MSC.Adams
 - Electric drives in FEMAG
 - Electric window lift in ABAQUS
- Software requirements for OptiSLang

→ Summary

Software requirements for OptiSLang

Requests For Enhancements

- → Direct usage of ASCMO-Metamodels in OptiSLang 4.0.
- Development of new DoE-schemata in order to define designs in areas with large approximation errors.
- Automatic recognition of input correlations during the calculation of the metamodels.
- More error plots like used in ASCMO (true prediction plot, convergence plot,....,)
- New result plots for the interactions of design variables
- Automatic detection of outliers

Summary

Applications

- The metamodels of ASCMO and OptiSLang allow the use for the optimization on condition that
 - the variables do not face a change in the order (e.g. eigenmodes)
 - the design space has realistic limits of the design variable
 - the variables do not face a change in the location (e.g. stress)
- The minimum number of DoE-designs for an acceptable error of the metamodels is about 200-300.
- The metamodels of ASCMO and OptiSLang lead to similar optimization results.
- The error of the metamodels strongly increase at the limits of the design space and lead to wrong optimization results.

Summary

Software OptiSLang - ASCMO

- The ASCMO-Metamodels have mostly a smaller error than the OptiSLang-Metamodels.
- The calculation of the ASCMO-Metamodels is significantly faster than the calculation of OptiSLang-Metamodels (factor of 3-5).
- The CPU-time of ASCMO-Metamodels via Python is considerably larger than the OptiSLang-Metamodels (factor of 5).
- The error of ASCMO-Metamodels can be displayed graphically and more extensive than only the specification of single values like COP, r_{max}, RMSE,...

Corporate Research and Advance Engineering

Questions?

We shape technology for the future of Bosch

