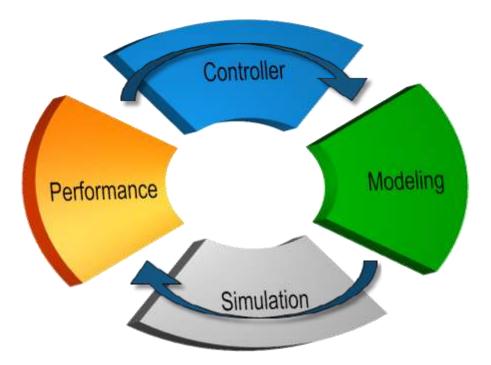
Robust Ship Design Optimization using Multidisciplinary Optimization and Stochastic Analysis.

Dirk Roos Institute of Modelling and High-Performance Computing

Stefan Harries & Jörg Palluch Friendship Systems

12/5/2012

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 1 |

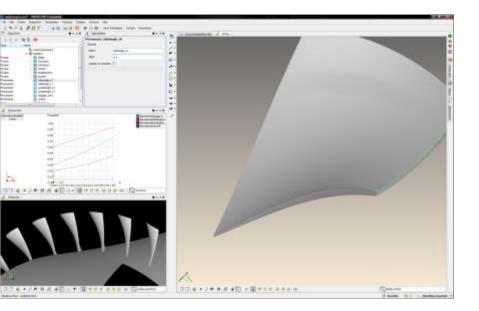


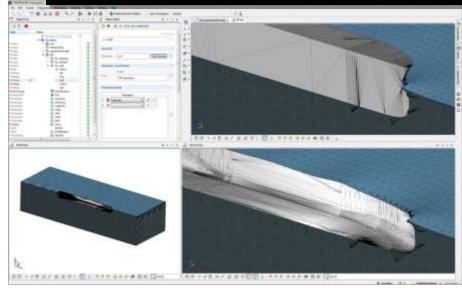
Institut für Modelfaldung und Hochleistungsrechnen Institute of Modeling and High-Parlormance Computin

Simulation-driven design

Approach

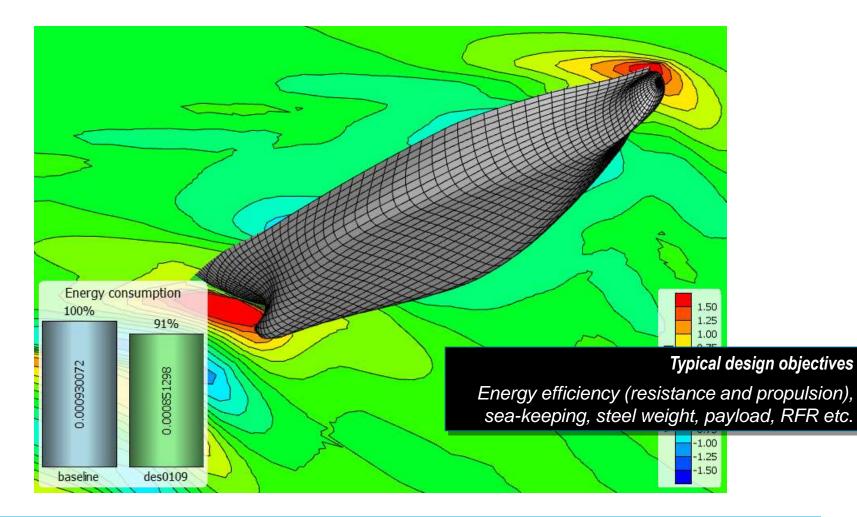
Utilize simulation, in particular Computational Fluid Dynamics (CFD), to get optimal shapes




Hochschule Niederrhein

Simulation-driven design of functional surfaces

Typical bottlenecks CFD is resource intensive and shapes need to be of high quality


| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 3 |

Hochschule Niederrhein

Illustration from ship design

Hull form development

101.00

Typical performance improvements even for good initial designs: 5%

 (\odot)

Representative savings for a megaboxer of 13 000 TEU: 3 000 t of heavy fuel oil per year = 22 222 bathtubs, i.e., about 1 500 000 US \$ every year

Photo by courtesy of DSME

Hochschule Niederrhein University of Applied Sciences

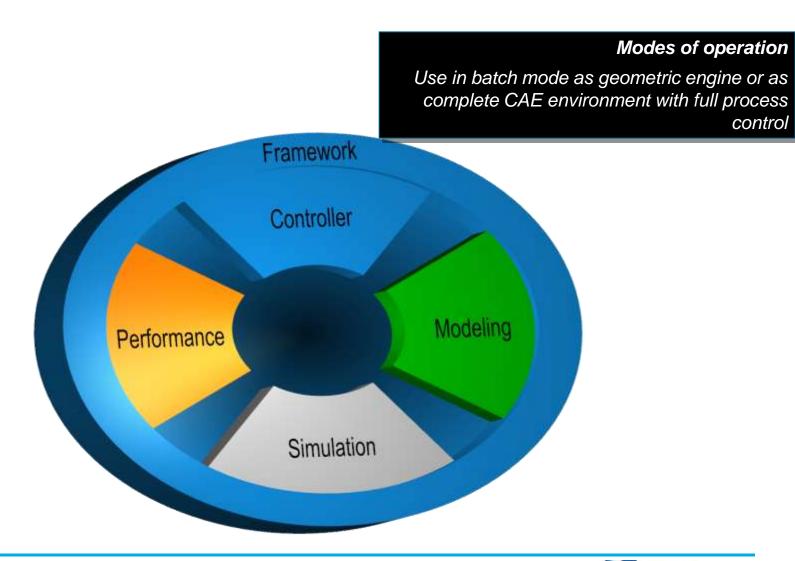
and High-Performance Computing

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 5 |

Typical users of the *FRIENDSHIP-Framework* (selected references)

Blohm+Voss Naval China Ship Development and Design Center Daewoo Shipbuilding & Marine Eng. (DSME) FutureShip GmbH Hamburgische Schiffbau-Versuchsanstalt (HSVA) Hudong Zhonghua KSB AG Meyer Werft MTU Friedrichshafen Pusan National University (PNU) Rolls-Royce Aeroengines Shanghai Jiao Tong University Shanghai Merchant Ship Design and Research Institute (SDARI) STX Offshore & Shipbuilding Sumitomo Heavy Industries Sungdong Shipbuilding Marine Engineering SVA Potsdam Technische Universität Hamburg-Harburg Universidade de Sao Paulo (USP) Voith Turbo Schneider Propulsion

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 6 |



Hochschule Niederrhein

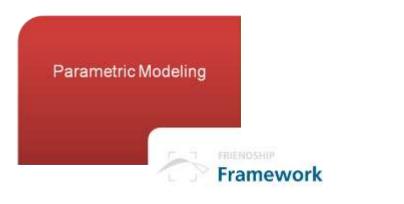
Institut für Modellbildu und Hochleistungsrech

Institute of Modelling and High-Parlormance Computing

The FRIENDSHIP-Framework

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 7 |

Institut für Modellbildung und Hochleistungsrechnen Institute of Modelling and High-Parlormance Computing


The FRIENDSHIP-Framework

Computer Aided Engineering and integration platform for

Design studies Formal optimization

Focus on geometric modeling of functional surfaces

Complex geometries with internal and external flows In particular, free-form surfaces that are challenging to parameterize

INTH Institut für Modelfbildung und Hachleistungsrechnen Institute of Modeling and High-Parformance Computing

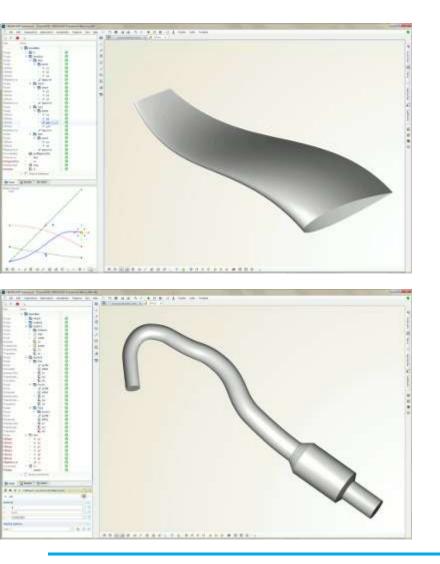
User defined parametrics

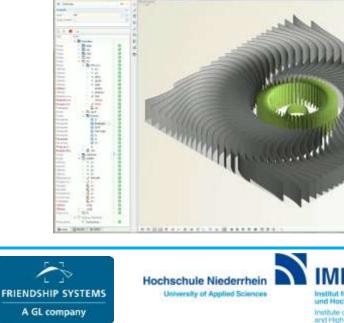
Fully parametric modeling

Complete geometry and all changes are defined parametrically

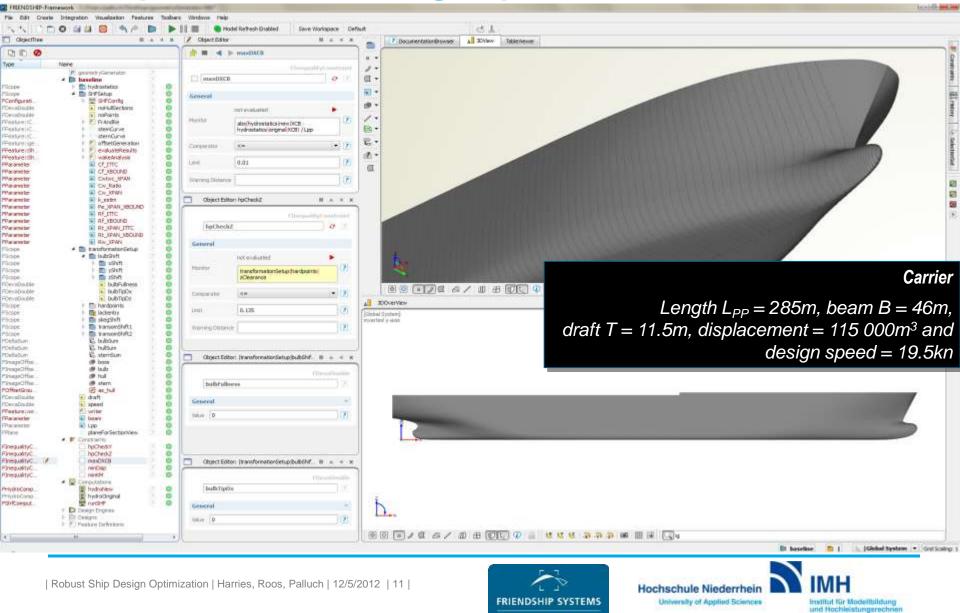
Partially parametric modeling

Given geometry Changes are realized parametrically Applicable to all shapes


| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 9 |



Parameterize and model functional surfaces


ARRING THE REAL

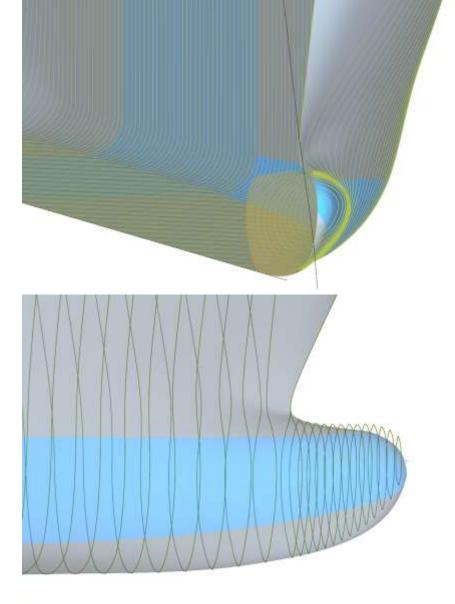
10.00

Institut für Modellbildung und Hochleistungsrechnen Institute of Modeling and High-Parlormance Computing

Example for robust design optimization

A GL company

institute of Modelling and High-Performance Computing


Input Parameters | Bulb

bulbFullness

Controls the volume in the bulb bulbTipDx

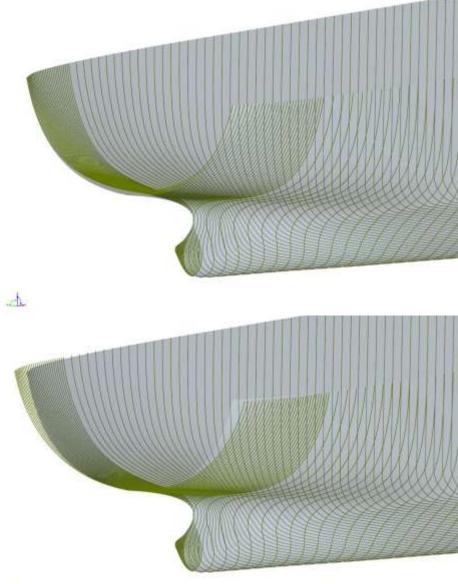
Longitudinal position of the bulb tip **bulbTipDz**

Vertical position of the bulb tip

<u>h</u>...

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 12 |

Hochschule Niederrhein



and High-Performance Computing

Input Parameters | Transom

transomDz

Vertical shift of the lower edge transomDy Width of the transom

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 13 |

FRIENDSHIP SYSTEMS A GL company

Hochschule Niederrhein

Institut für Modelfbildung und Hochaleistungsrechnen Institute of Modeling and High-Parformance Computing

Input Parameters | Global Displacement Shift

deltaCP

Change of the prismatic coefficient, allows smoothly increasing or decreasing the hull's displacement

deltaXCB

Controls the change of the longitudinal position of the hull's center of buoyancy

midTan

Controls the middle tangent of the displacement shift function

lackenbyXMid

Controls the longitudinal mid position of the displacement shift function (related to midTan)

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 14 |

Hochschule Niederrhein

Institut für Modelfbildung und Hachleistungsrechnen Institute of Modeling und High-Parformance Computing

Input Parameters | Skeg

dyLowMax

Maximum extension of the lower skeg transformation

dyUppMax

Maximum extension of the upper skeg transformation

xDyLowMax

Longitudinal position of the lower maximum extension

xDyUppMax

Longitudinal position of the upper maximum extension

dvXFwd

End position of the skeg shift

Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 15

Output Parameters | Objectives

CWTWC

Wave resistance coefficient from transverse wave cut, initial design: 0.227 E-03

CW

Wave resistance coefficient from pressure integration, initial design: 0.862 E-03

CF

Frictional resistance coefficient, initial design: 1.439 E-03

CFD system used here: SHIPFLOW

Integrations exist to STAR-CCM+, FINE/Turbo, OpenFOAM, ICON FOAM Pro, CFX etc.

Hochschule Niederrhein University of Applied Sciences

Output Parameters | Constraints

hpCheckY

Hard point's check in y-direction

hpCheckZ

Hard point's check in z-direction

maxDXCB

Maximum percental change allowed for longitudinal position of the hull's center of buoyancy

minDISP

Minimum displacement for modified hull shape

minKM

Minimum stability value for modified hull shape

Parametric model

Takes care of further constraints implicitly, e.g. operational and production aspects

Hochschule Niederrhein

Output Parameters | Objective function

$$p(f_i(x_1, x_2, \dots, x_{14})) = \sum_{i=1}^2 W_i \frac{f_i(\mathbf{x})}{\Gamma_i}$$
$$Rt = (1.0 \cdot CWTWC + 1.2 \cdot CF) \left(0.5 \cdot dens \left(Re \frac{visc}{Lpp} \right)^2 Sref \cdot Lpp^2 \right)$$

Sref

Wetted surface at zero speed

Dens

Water density

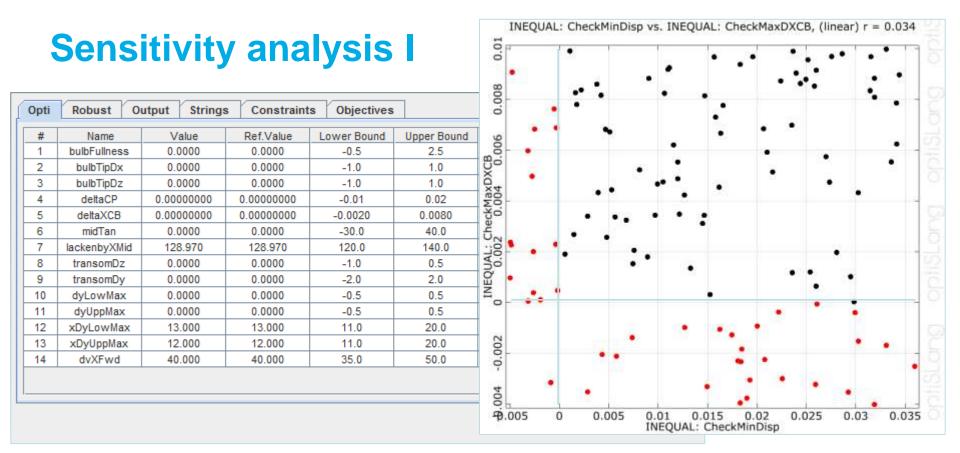
Visc

Water kinematic viscosity

Lpp

Length between perpendiculars

Re

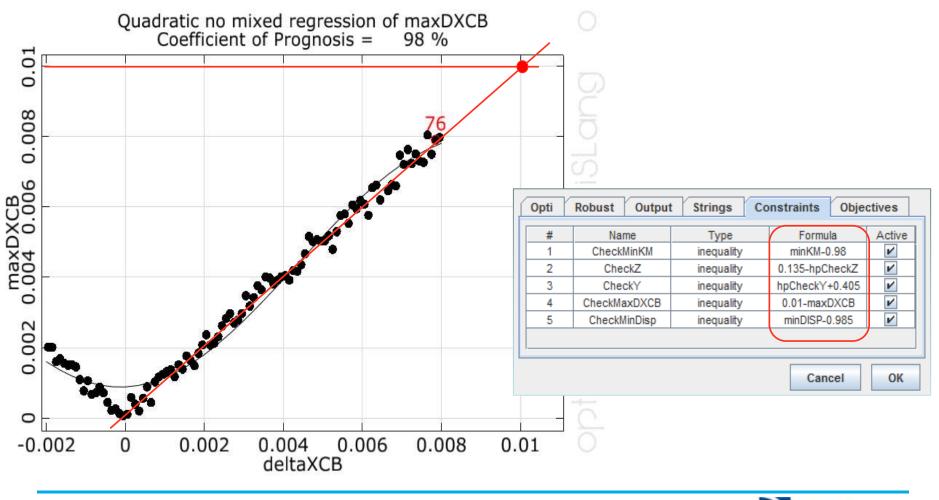

Reynolds number

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 18 |

Hochschule Niederrhein University of Applied Sciences

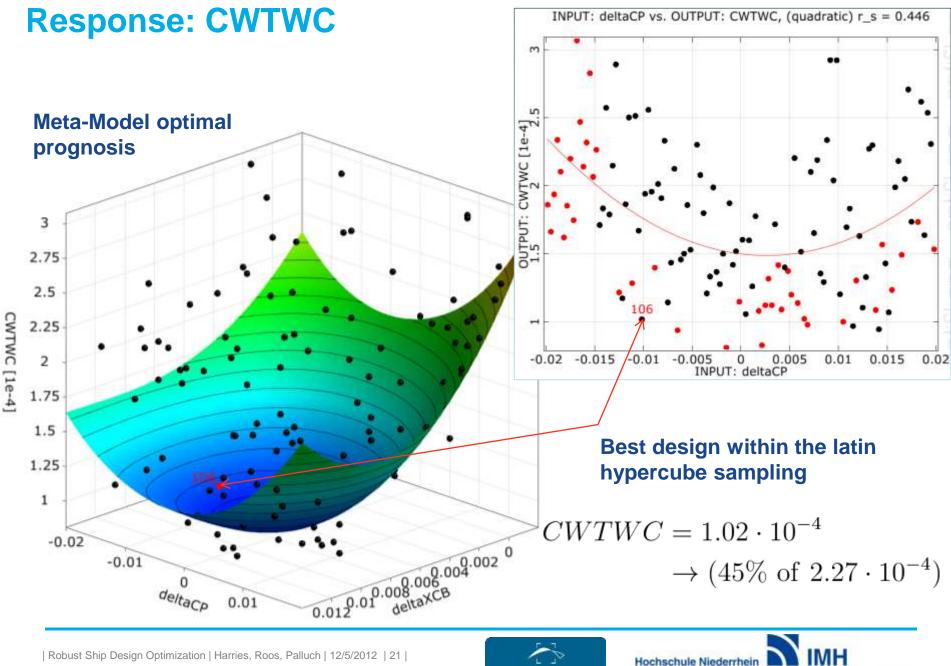
- Defined design (optimization) parameters $n_D = 14$ and responses (output)
- Given reference values
- Lower and upper bounds to define the box constrains used within optimization

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 19 |



Sensitivity Analysis II

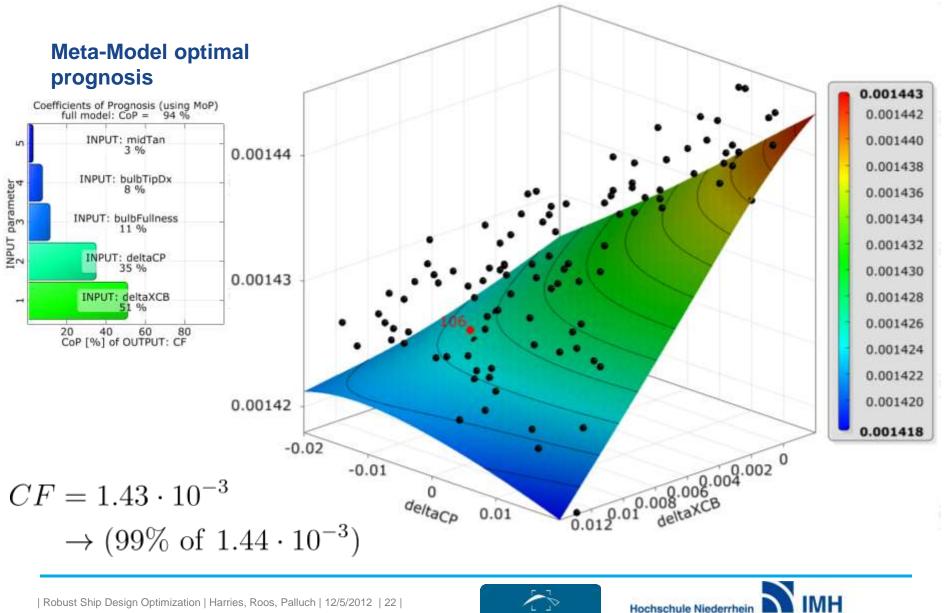
 Extrapolation of the design parameters to make accessible optimization potential


| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 20 |

Hochschule Niederrhein

without für 24.

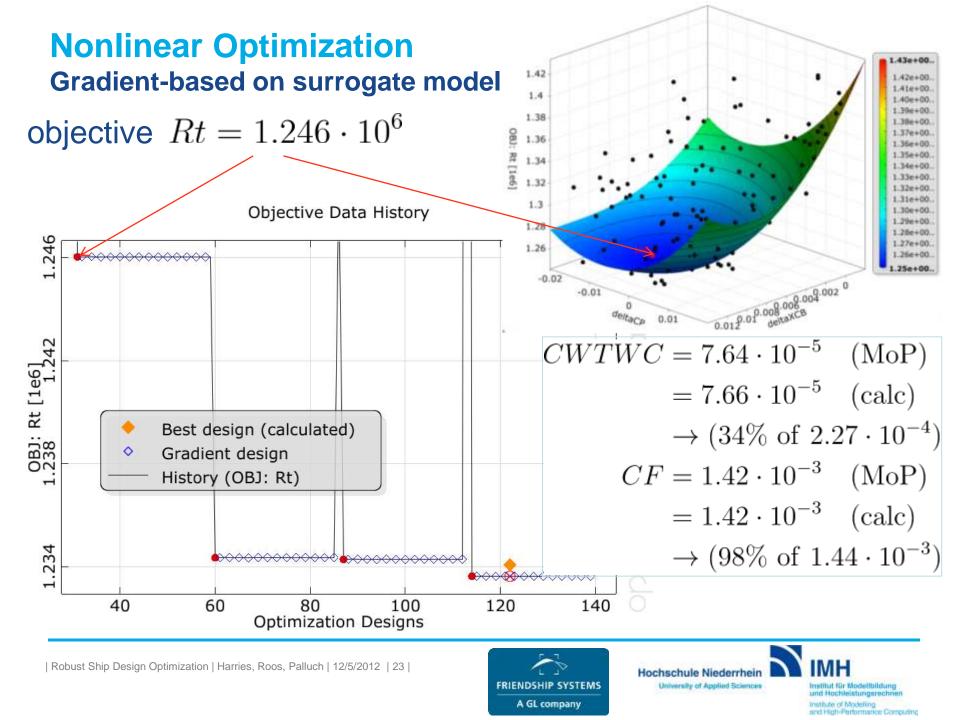
institute of Modelling and High-Partormance Computing

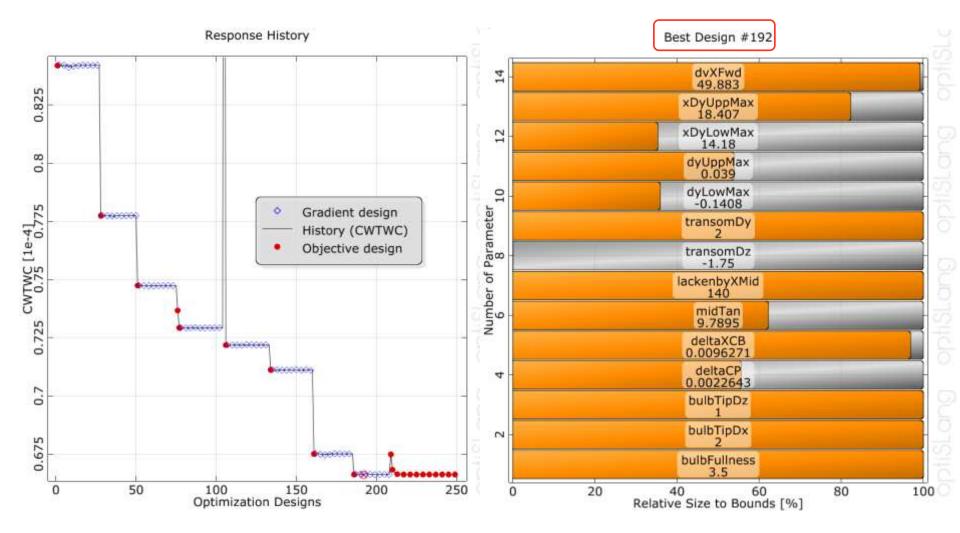


University of Applied Sciences

institute of Modelling and High-Performance Computing

Response: CF

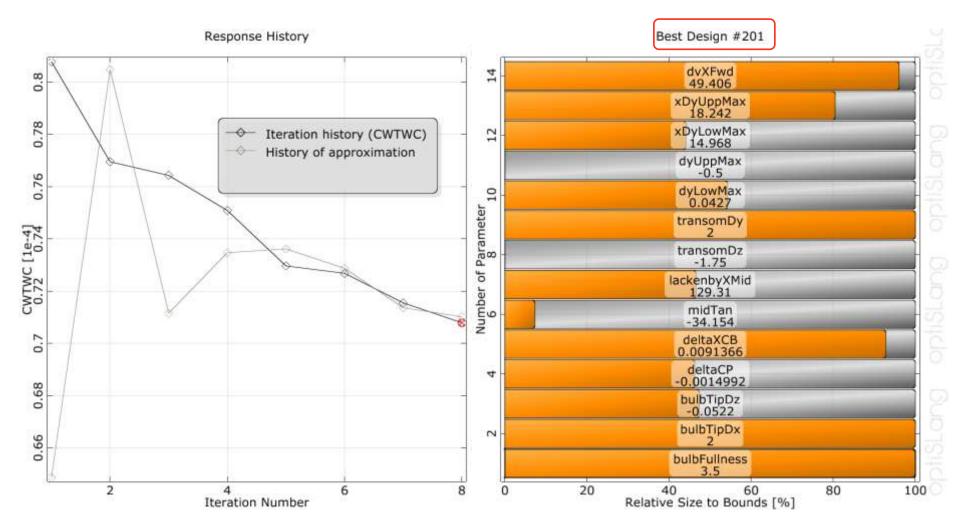



University of Applied Sciences

Institut für Modellbildung und Hochleistungsrechner

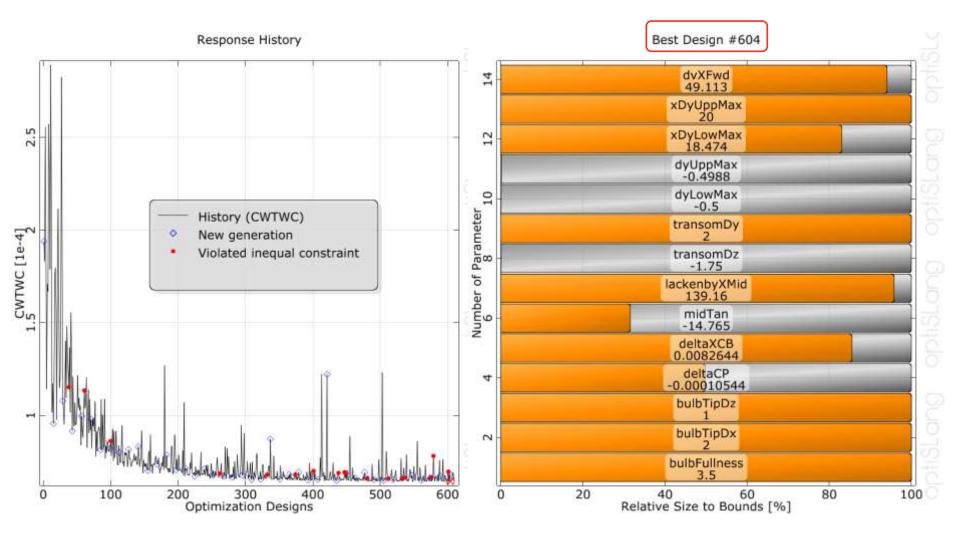
institute of Modelling and High-Performance Computing

Nonlinear Optimization Gradient-based optimization (SQP)


| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 24 |

Institut für Modelfbildung und Hochleistungsrechnen imitiute of Modelling and High-Parlermance Computing

Nonlinear Optimization Adaptive response surface (ARSM)



Institut für Modelfbildung und Hochleistungsrechnen Institute of Modeling and High-Performance Computing

Nonlinear Optimization Evolutionary algorithm

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 26 |

Hochschule Niederrhein

Nonlinear Optimization Summary

	Start	SA	МоР	SQP	ARSM	EA
CWTWC	$2.27 \cdot 10^{-4}$	$1.02\cdot 10^{-4}$	$7.66 \cdot 10^{-5}$	$6.66 \cdot 10^{-5}$	$7.08 \cdot 10^{-5}$	$6.43 \cdot 10^{-5}$
	100%	45%	34%	29%	31%	28%
CF	$1.44 \cdot 10^{-3}$	$1.43 \cdot 10^{-3}$	$1.42\cdot 10^{-3}$	$1.42\cdot 10^{-3}$	$1.42 \cdot 10^{-3}$	$1.42 \cdot 10^{-3}$
	100%	99%	98%	98%	98%	98%
Design Evaluations	-	312	1	192	201	604
		Total:	505			

Institute of Modelling and High-Partormance Computing

Design improvement considering uncertainties?

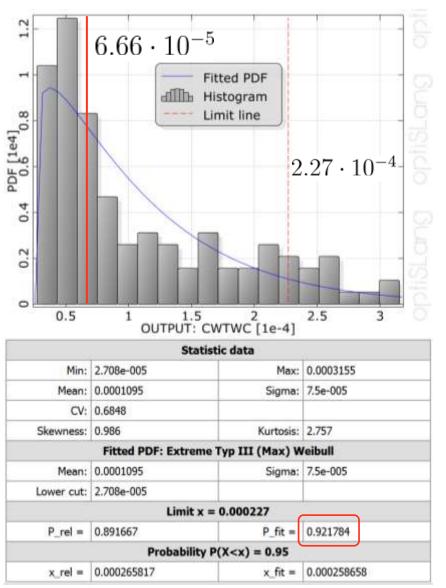
| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 28 |

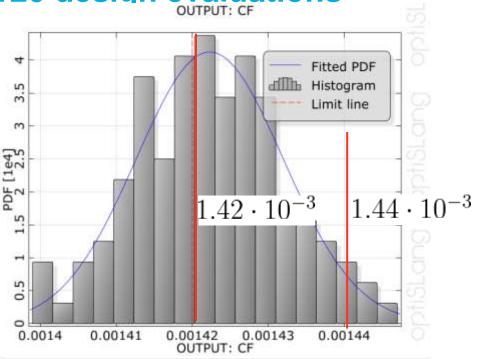
Hochschule Niederrhein

Robustness evaluation

Opti	Robust Ou	itput Sti	rings Constraints	Objectives						
#	Name	Distributio	Mean	CoV	Stddev	ower Cut	Upper	For	A	C
1	noHullSections	Normal	150.0	0.05	7.5	-	-	%3i	~	
2	noPoints	Normal	100.0	0.05	5.0	-	-	%3i	~	
3	bulbFullness	Normal	3.5	0.002857142857142857	0.01	-	-	%	~	
4	bulbTipDx	Normal	2.0	0.0050	0.01	-	-	%	~	
5	bulbTipDz	Normal	1.0	0.01	0.01	-	-	%	~	
6	deltaCP	Normal	0.00226434	0.04416297905791533	1.0E-4	-	-	%	~	
7	deltaXCB	Normal	0.00962715	0.01038729011181918	1.0E-4	-	-	%	~	
8	midTan	Normal	9.7895	0.05107513151846366	0.5	-	-	%	~	
9	lackenbyXBeg	Normal	20.0	0.1	2.0	-	-	%	~	
10	lackenbyXMid	Normal	140.0	0.014285714285714285	2.0	-	-	%	~	
11	lackenbyXEnd	Normal	280.0	0.007142857142857143	2.0	-	-	%	~	
12	transomDz	Normal	-1.75	0.005714285714285714	0.01	-	-	%	~	
13	transomDy	Normal	2.0	0.0050	0.01	-	-	%	~	
14	dyLowMax	Normal	-0.1408	-0.0710227272727272727	0.01	-	-	%	~	
15	dyUppMax	Normal	0.039	0.25641025641025644	0.01	-	-	%	~	
16	xDyLowMax	Normal	14.18	0.007052186177715092	0.1	-	-	%	~	
17	xDyUppMax	Normal	18.407	0.005432715814635737	0.1	-	-	%	~	
18	dvXFwd	Normal	49.883	0.010023454884429565	0.5	-	-	%	~	
19	Fn	Normal	0.18972133	0.050000000000000001	0.009486066500000	-	-	%	~	
20	Rn	Normal	2.599113636363636	0.05	1.299556818181818	-	-	%	~	
21	density	Normal	1025.0	0.025	25.625	-	-	%	~	
22	draft	Normal	11.5	0.05	0.5750000000000001	-	-	%	~	
23	trim	Normal	0.0	Infinity	0.2	-	-	%	~	
							Cancel		C	Ж

Mean and modified standard deviation of the best design as result of the gradient-based optimization


| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 29 |



Hochschule Niederrhein

Robustness evaluation with 120 design evaluations

	Sta	itistic data		
Min:	0.001399	Max:	0.001447	
Mean: 0.001422		Sigma:	9.671e-006	
CV:	0.006799			
Skewness:	-0.02388	Kurtosis:	2.831	
	Fitted	PDF: Normal		
Mean: 0.001422		Sigma:	9.671e-006	
	Limit	x = 0.00142		
P_rel =	0.425	P_fit =	0.405673	
	Probabili	ty P(X <x) 0.95<="" =="" td=""><td></td></x)>		
x_rel =	0.00144	x_fit =	0.00143822	

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 30 |

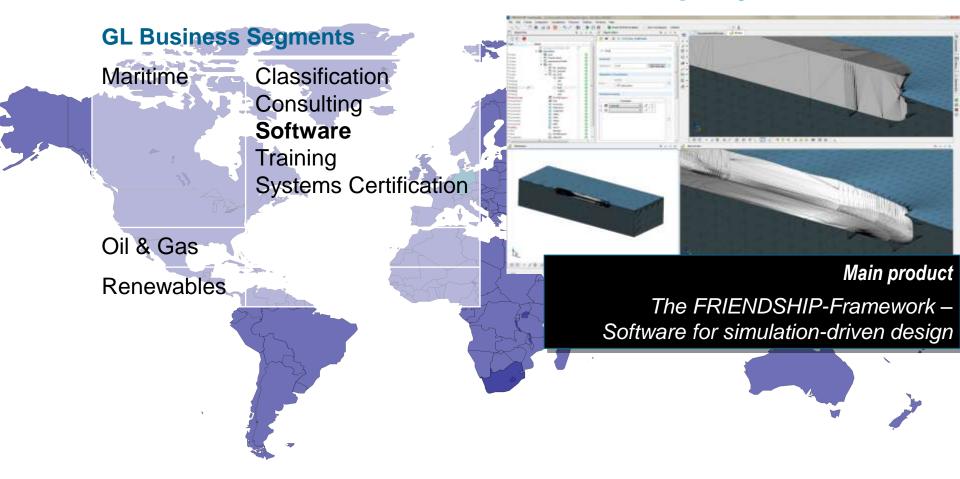
Thank you very much for your attention

Dr.-Ing. Stefan Harries FRIENDSHIP SYSTEMS GmbH

Benzstr. 2 14482 Potsdam, Germany Email: harries@friendship-systems.com

Prof. Dr.-Ing. Dirk Roos

IMH - Institute of Modelling and High-Performance Computing Niederrhein University of Applied Sciences Email: dirk.roos@hs-niederrhein.de


| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 31 |

Hochschule Niederrhein University of Applied Sciences

FRIENDSHIP SYSTEMS – A GL Company

| Robust Ship Design Optimization | Harries, Roos, Palluch | 12/5/2012 | 32 |

Institut für Modelfbildung und Hochleistungsrechnen Institute of Modeling and High-Parlormance Computing