

Realize Your Product Promise™

Multi-Physics Design Optimization of an Axial Compressor

Application and Best-Practice Guide-Lines

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Johannes Einzinger, ANSYS

presented at the 9th Weimar Optimization and Stochastic Days 2012 ource: www.dynardo.de/en/library

Simulation Model, Best-Practice CFD and FEM

Meta-Model of optimal Prognosis

Best-Practice for MoP

2 © 2011 ANSYS, Inc. December 11, 2012

ANSYS[®] **Geometry, Aero Dynamic**

2012

- CFD Solver: CFX
- Nodal based FVM

- Mass & Momentum, Energy…
- Turbulence Model:
 - Shear Stress Transport
- -Two sector by passage, MFR:
 - Profile/Time Transformation
 - Periodic Interface

Parameters CEX

^{© 2011} ANSYS, Inc. December 11, 2012

5, IIIC.

December 11, 2012

Steady vs. Transient simulation

Cold vs. hot geometry

Turbulence Model: RANS
 vs. Scale Resolved

ANSYS Static Structural (Pre-Stress)

Static Solution:

- Displacement
- Strain & Stress
- Numerical Error
- Pre-Stress for further Analysis

441 18.34

1.374.548

1.346248 8.28(797 0.872567 9.380247 1.290147

1001.1 14

1.0613ed

Discretization

Error<10-8

December 11,

2012

- Charles and a state of the st

Maximal v. Mises Stress ~ 220 MPa

	Mode	Frequency [Hz]
1	1.	1537.3
2	2.	2931.7
3	3.	5448.2
4	4.	7053.
5	5.	7567.1
6	6.	11155

- Pre-Stressed Modal Analysis:
 - Eigen Frequencies and Vectors
 - Data for further MOR-Analysis

ANSYS optiSLang inside Workbench

The Workbench Effect – easier to use

14 © 2011 ANSYS, Inc. December 2012

ANSYS Optimization Strategy

General Procedure:

- Design Optimization
 - Gradient Based
 - Generic
 - Evolutionary

- Design of Experiments
 - Data Sampling
 - Detecting Correlations
 - Detecting Important Parameters
 - Parameter Space
 Reduction
 - Response Surface
- Design Optimization

15 © 2011 ANSYS, Inc. D

December 11, 2012

MNSYS Meta-Model of Optimal Prognosis, MoP

- Importance Filter (Col)
- Remaining parameters are used for non/linear approximation
- Basic Points for Approximation
- Test Points for Quality
 Assurance
 Data-Split

$$CoP = \left(\frac{E(Y \cdot \hat{Y})}{\sigma_{Y} \cdot \sigma_{\hat{Y}}}\right)^{2} = \left(\frac{\sum_{k=1}^{N} (y^{(k)} - \mu_{y}) \cdot (\hat{y}^{(k)} - \mu_{\hat{y}})}{(N-1) \cdot \sigma_{Y} \cdot \sigma_{\hat{Y}}}\right)^{2}$$

$$Y_{k} = f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{6}, \dots, x_{N})$$

MSYS Meta-Model of Optimal Prognosis, MoP

Maximal Stress

- CoP=86%
 Statistic is reliable
 Detect important Variables
 Parameter Reduction
- MoP is plausible

Blade Angle: Hub, Mid Leading Edge

2.98e+008 2.90e+008 2.85e+008 2.85e+008

75++00

1.80e+008 1.75e+008 1.70e+008 1.65e+008

19

R

© 2011 ANSYS, Inc.

ANSYS Aero Dynamic

- CoP=64% and 65%
 - -small value
 - -Numerical error?
 - -Model error?
- Important Variables
 Parameter Reduction

December 11,

2012

MoP is plausible

© 2011 ANSYS, Inc.

20

ANSYS Trouble Shooting for small CoP

- Number of Evaluated Designs?
 Check CoP(80)~CoP(150)
- Numerical Error?
 Best-Practice!
- Model Error?
- Multiple Mechanisms
 Use alternative Output
- Options:
 - -Design Optimization
 - -Meta-Model in Subspace

ANSYS Multiple Mechanism

ANSYS Design Optimization, Strategy

Sensitivity Analysis:

- Shows potential
- Indicates global optimum
- Parameter reduction
- Modify parameter space

Strategy:

- Get best Design from SA/MoP
- Evaluate this Design and get initial for:
- Optimization in sub space: ARSM
 - Small Number of Parameter
 - Global Optimum

ANSYS Design Optimization, Summary

	Initial Design	Best Design SA	Best Design Solved (MoP)	Best Design ARSM
Efficiency [%]	87.0	88.0	88.9 (91.0)	88.9
p _{tot} Ratio [-]	1.41	1.41	1.41 (1.44)	1.41
Max. Stress [MPa]	219	235	232 (230)	239
#Designs	1	150	1 (0)	100
24 © 2011 ANSYS, Inc. December	r 11,			

2012