

Quality criteria of robustness analyses in electrodynamics

Christian Büttner Prof. Dr. Dirk Roos Dr. Katharina Straube

Hochschule Niederrhein

Robert Bosch GmbH

Electrical Drives

Outline

Electrical Drives

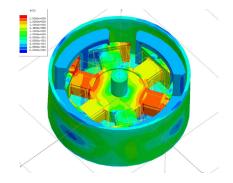
- Computer aided magnetic circuit calculation of motors at ED and the challenges in robust motor design
- Assessment of quality criteria of robustness evaluations
 - Influence of tolerance distributions on robustness analyses
 - Convergence of CoP's

Electrical Drives (ED)

- Part of the business sector Automotive Technology of the Robert Bosch GmbH
- Development and manufacturing of electrical drives for automotive applications, e.g.:

- Head Office in Bühl (Baden)
- → Department ED/EED engineering of electrical drives
 - Design and optimization of the motor magnetic circuits

Electrical Drives



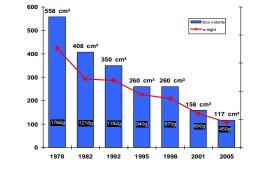
Computer aided magnetic circuit design at ED

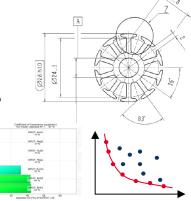
- → Magnetic circuit design considers:
 - Motor characteristics, demagnetization, forces, losses, ...
- → The following computer models are used:
 - Electromagnetic field calculations via geometry based 2D/3D finite element calculation (FEA)
 - Analytical commutation calculations
- Interaction with other domains:
 - Forces and torques \rightarrow NVH, static structural analysis
 - Losses → Thermal

Electrical Drives

ED/EED1 | 2012-11-30 | © Robert Bosch GmbH 2012. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Electrical Drives


Need of motor topologies with higher number of poles having a higher sensitivity to tolerances


->

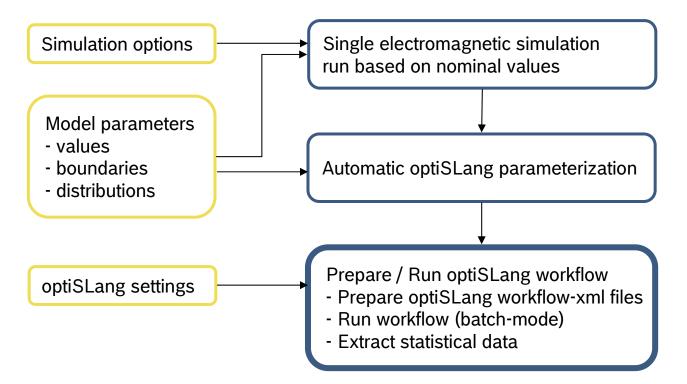
Motivation

- Vision:
 Find an optimal and rob
 - Find an optimal and robust design of the magnetic circuit of the motor based on accurate and fast calculations
- → Requirements:
 - Fully parameterized and automated motor simulation tool based on a unique data format of input parameters
 - Methodology of optimization algorithms and robustness analysis

Increased focus on reduction of weight and volume

Requirements on robustness analysis

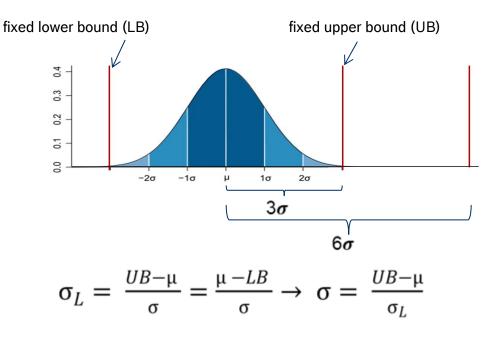
- Reliable detection of cause-effect relationships in order to find important tolerance parameters
- → Robust optimization requires CAE process to be accurate
 - Sufficient quality of model and parameterization is necessary
- Robust optimization requires a very high computational effort
 - Efficient use is necessary
- → Goals:
 - To asses quality criteria of robustness analysis
 - 1. Variance of robustness analyses
 - 2. Influence of input tolerance distribution (sigma level)
 - 3. Required number of design evaluations
 - To provide an automatic workflow for calculating these factors


Electrical Drives

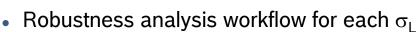
6

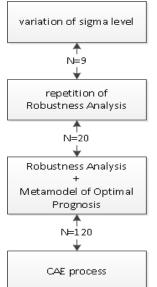
Concept of automatic workflow

 Together with the ED-automatic CAE-Solver, an automatic optiSLang workflow has been prepared in Matlab



- Information about mean values and tolerances (drawings)
- Less information about variance and distribution of the parameters


 μ = mean value, σ = standard deviation, σ_{L} = sigma level

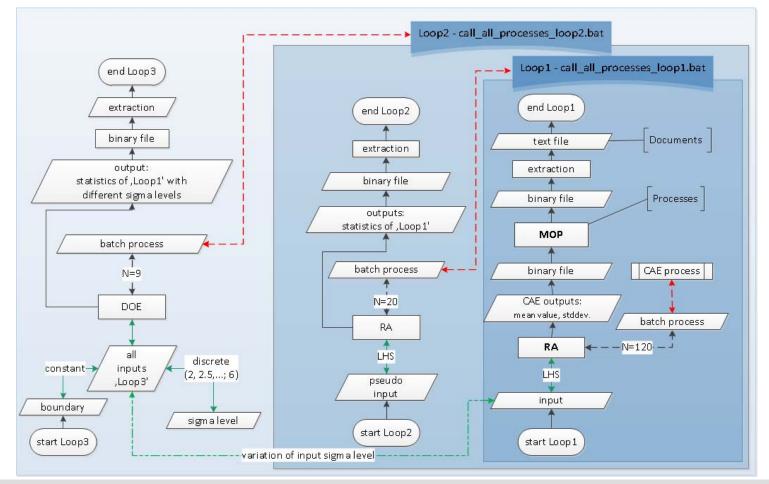


- Which influence has the sigma-level of input parameter distributions on the robustness analyses (RA)?
 - Variation of sigma levels (σ_L)

Repetition of robustness analysis

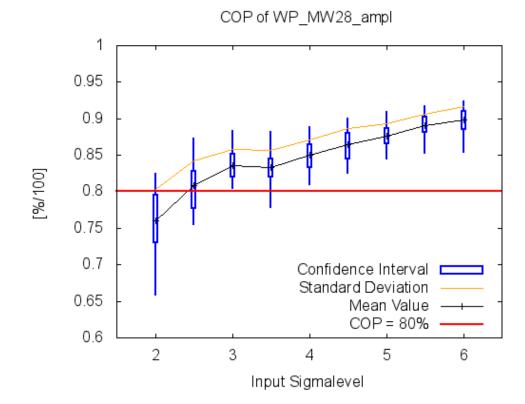
0.1

→ Allows evaluation of statistical behaviour of the method of robustness analysis including MoP


Electrical Drives

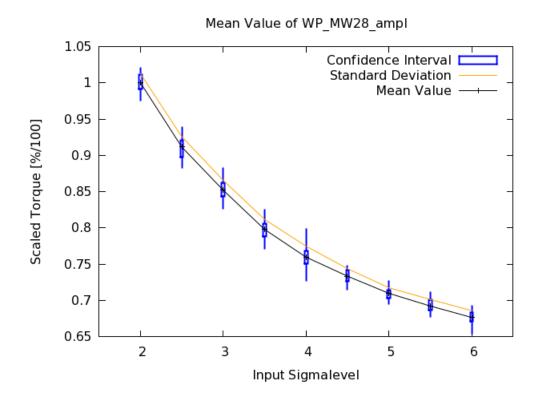
Quality criteria of robustness analyses

Influence of sigma-level on robustness analysis



Electrical Drives

10


\rightarrow Detect model problems of low CoP's

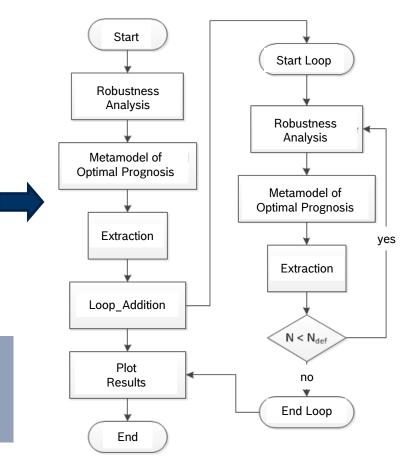
Electrical Drives

11

\rightarrow Evaluate influence of distributions with different sigma-levels

Electrical Drives

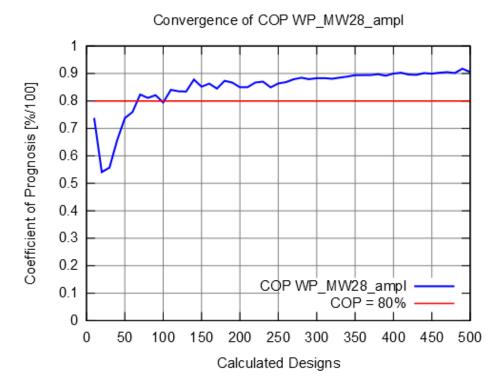
12



Quality criteria of robustness analyses

Required number of calculations of RA

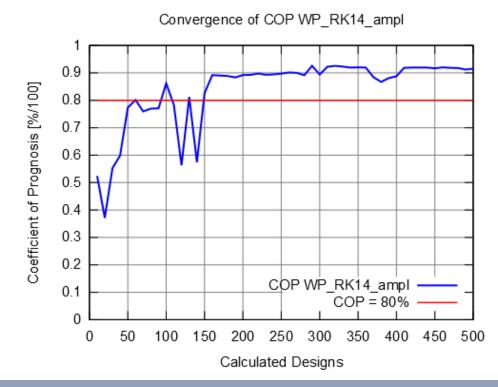
- → Find best compromise of run time and quality of the robustness analysis
 - Robustness Analysis (using LHS with 10 Samples)
 - Extraction of CoP
 - Loop of RA (ALHS by increasing N until N_{def} = 500 Samples)
 - Extraction of CoP's
- → Allows evaluation of convergence of statistical data depending on number of design evaluations



Electrical Drives

Required number of calculations of RA

→ Evaluation of convergence of the CoP's of the output values allows to decide about the required number of iterations

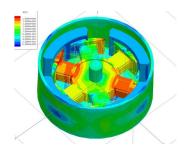

Electrical Drives

14

BOSCH

Required number of calculations of RA

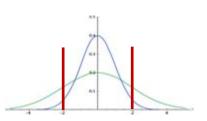
→ Evaluation of convergence of the CoP's of the output values allows to decide about the required number of iterations


Electrical Drives

15

BOSCH

Summary


- Reliable application of the method of robustness analysis is essential for robust design optimization
- Automated workflow of testing settings of robustness analyses allows the calculation of quality criteria
 - Convergence of CoP's due to number of design evaluations
 - Evaluate influence of distributions with different sigma levels
 - The presented work forms a fundamental support for motor developers in setting suitable parameters to carry out robustness analyses

Electrical Drives

16

