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Abstract

In this paper an efficient approach is presented to assist reducing the
number of design evaluations necessary, in particular the number of non-
linear fluid-structure interaction analyses. In combination with a robust
estimation of the safety level within the iteration and a final precise re-
liability analysis, the method presented is particularly suitable for solving
reliability-based structural design optimization problems with ever-changing
failure probabilities of the nominal designs.

The applicability for real case applications is demonstrated through the
example of a radial compressor, with a very high degree of complexity and a
large number of design parameters and random variables. Note: an extended
version of this paper is originally published in Roos et al. (2013).
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Figure 1: Coupled numerical models and different variable spaces of a stochastic
design optimization of a fluid-structure interaction analysis based on a parametric
geometry model (according Chateauneuf, 2008).

1 INTRODUCTION

1.1 Stochastic design optimization
Since the engineering of turbo machines began the improvement of specific phys-
ical behaviour, especially the efficiency, has been one of the key issues. However,
improvement of the efficiency of a turbo engine, is hard to archive using a con-
ventional deterministic optimization, since the geometry is not perfect and many
other parameters vary in the real approach.

In contrast, stochastic design optimization is a methodology that enables the
solving of optimization problems which model the effects of uncertainty in man-
ufacturing, design configuration and environment, in which robustness and relia-
bility are explicit optimization goals. Therein, a coupling of stochastic and opti-
mization problems implies high computational efforts, whereby the calculation of
the stochastic constraints represents the main effort. In view of this fact, an in-
dustrially relevant algorithm should satisfy the conditions of precision, robustness
and efficiency.

In engineering problems, randomness and uncertainties are inherent and may be
involved in several stages, for example in the system design with material parame-
ters and in the manufacturing process and environment. Stochastic optimization,
also referred to as reliability-based and variance-based optimization is known as
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the most adequate and advantageous methodology for system or process design
and aims at searching for the best compromise design between design improve-
ment and robustness or reliability assurance. Herein, the optimization process
is carried out in the space of the design parameters and the robustness evalua-
tion and reliability analysis are performed in the space of the random variables.
Consequently, during the optimization process the design variables are repeat-
edly changed, whereby each design variable vector corresponds to a new random
variable space. Therefore usually, a high number of numerical calculations are re-
quired to evaluate the stochastic constraints at every nominal design point. This
repeated search becomes the main problem, especially when numerical nonlinear
multi-domain simulations and CAD models are involved.

Unfortunately, in real case applications of the virtual prototyping process, it
is not always possible to reduce the complexity of the physical models to obtain
numerical models which can be solved quickly. Although progress has been made
in identifying numerical methods to solve stochastic design optimization problems
and high performance computing, in cases such as those that have several nested
numerical models, as shown in Fig. 1, the actual costs of using these methods to
explore various model configurations for practical applications is too high. There-
fore, methods for efficiently solving stochastic optimization problems based on the
introduction of simplifications and special formulations for reducing the numerical
efforts are required.

1.2 Application to aerodynamic optimization
In comparative studies on the application of the deterministic optimization for
aerodynamic optimization (see e.g. Sasaki et al., 2001; Shahpar, 2000) usually
stochastic programming algorithms or response surface methods (see e.g. Pierret
and van den Braembussche, 1999) are used in turbomachinery design, for example
in the development of engine components, such as at Vaidyanathan et al. (2000).
In Shyy et al. (2001) a comprehensive overview is represented.

Another very comprehensive study of the use of the combination of genetic
algorithms and neural networks for two-dimensional aerodynamic optimization of
profiles is presented in Dennis et al. (1999) combine a genetic algorithm with an
gradient-based optimization method.

Furthermore, an increasing application of stochastic analysis on turbo machin-
ery (e.g. at Garzon, 2003; Garzon and Darmofal, 2003; Lange et al., 2010; Parchem
and Meissner, 2009) underlines the importance of integrating the uncertainty anal-
ysis into the aerodynamic design process.
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2 RELIABILITY AND VARIANCE-BASED DE-
SIGN OPTIMIZATION

2.1 Deterministic optimization
Optimization is defined as a procedure to achieve the best outcome of a given objec-
tive function while satisfying certain restrictions. The deterministic optimization
problem

f(d1, d2, . . . dnd
)→ min

el(d1, d2, . . . dnd
) = 0; l = 1, ne

um(d1, d2, . . . dnd
,γ) ≥ 0; m = 1, nu
dli ≤ di ≤ dui

di ∈ [dli , dui
] ⊂ Rnd

(1)
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is defined by the objective function f : Rnd → R subject to the restrictions, defined
as equality and inequality constraints el and um. The variables d1, d2, . . . dnd

are
the optimization or design variables and the vector of the partial safety factors
γ ensures the system or design safety within the constraint equations um, for
example defining a safety distance u(d, γ) = yg/γ−yd ≥ 0 between a defined limit
state value yg and the nominal design value yd of a physical response parameter
y = f(d). In structural safety assessment, a typical constraint for the stress is
given as

u(d, γ) = σy,k/γ − σd ≥ 0 (2)
ensuring the global safety distance

∆γ = σy,k − σd = σy,k −
σy,k
γ

= σy,k

(
1− 1

γ

)

between the defined quantile value σy,k of the yield stress and the nominal design
stress σd with the global safety factor γ, as shown in Fig. 3. Whereby, in the
real approach with given uncertainties, σd corresponds to the mean von Mises
equivalent stress σ̄e at the current design point.

2.2 Stochastic chance-constrained optimization
Stochastic optimization algorithms use the quantification of uncertainties to pro-
duce solutions that optimize the expected performance of a process or design, en-
suring the target variances of the model responses and failure probability. So, the
deterministic optimization problem (1) can be enhanced by additional stochastic
restrictions. For example, the expression for system reliability

1− P (F)
P t(F) ≥ 0 (3)

ensures that the probability of failure

P (F) = P [{X : gk(x) ≤ 0}] =
∫

nr. . .
∫

gk(x)≤0

fX(x)dx (4)

cannot exceed a given target probability P t(F), considering the vector of all ran-
dom influences

X = [X1, X2, ..., Xnr ]T (5)
with the joint probability density function of the random variables fX(x) and
k = 1, 2, ..., ng limit state functions gk(x) ≤ 0.

These enhancements of the problem (1) are usually referred to reliability-based
design optimization, in which we ensure that the design variables di satisfy the
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given constraints (3) to some specified probabilities. As a consequence, now the
design parameters

d = E[X] (6)
are the means of the nr random influences X with every changing density function
during the optimization process. As a result of the random influences, now the
objective and the constraints are non-deterministic functions.

2.3 Reliability analysis using adaptive response surface method
For an efficient probability assessment of P (F), according to Eq. (4), a multi-
domain adaptive design of experiment in combination with directional sampling
(see e.g. Ditlevsen et al., 1990) is introduced in Roos (2011) to improve the accu-
racy and predictability of surrogate models, commonly used in applications with
several limit state conditions. Furthermore, the identification of the failure do-
mains using the directional sampling procedure, the pre-estimation and the priori
knowledge of the probability level is no longer required. Therefore this adaptive
response surface method is particularly suitable to solve reliability-based design
optimization problems considering uncertainties with ever-changing failure proba-
bilities of the nominal designs.

However, a reliability analysis method based on surrogate models, is generally
suitable for a few random variables only. In case of the proposed probability
assessment method, an efficient application is given up to nr = 10, ..., 25, depending
on the number of relevant unsafe domains. Therefore, a variance-based sensitivity
analysis should be used to find a reduced space of the important random influences.

2.4 Global variance-based sensitivity analysis
In general, complex nested engineering models, as shown in Fig. 1 contain not only
first order (decoupled) influences of the design parameters or random variables but
also higher order (coupled) effects on the response parameter of a numerical model.
A global variance-based sensitivity analysis, as introduced by Saltelli et al. (2008),
can be used for ranking variables X1, X2, . . . , Xnr with respect to their importance
for a specified model response parameter

Y = f(X1, X2, . . . , Xnr)

depending on a specific surrogate model Ỹ . In order to quantify and optimize the
prognosis quality of these meta models, in Most and Will (2008) and Most (2011)
the so-called coefficient of prognosis

COP =
(

E[YTest · ỸTest]
σYTestσỸTest

)2

; 0 ≤ COP ≤ 1 (7)
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of the meta model is introduced. In contrast to the commonly used generalized
coefficient of determination R2 based on a polynomial regression model, in Eq. (7)
variations of different surrogate models Ỹ are analyzed to maximize the coefficient
of prognosis themselves. This procedure results in the so-called meta model of
optimal prognosis, used as surrogate model Ỹ with the corresponding input vari-
able subspace which gives the best approximation quality for different numbers
of samples, based on a multi-subset cross validation obtained by latin hypercube
sampling (see e.g. Huntington and Lyrintzis, 1998).

The single variable coefficients of prognosis are calculated as follows

COPi = COP · S̃Ti
(8)

with the total sensitivity indices

S̃Ti
= E(V (Ỹ |X∼i))

V (Ỹ )
(9)

which have been introduced by Homma and Saltelli (1996), where E(V (Ỹ |X∼i))
is the remaining variance of Ỹ that would be left, on average, if the parameter of
Xi is removed from the model. In Eq. (9) X∼i indicates the remaining set of input
variables.

2.5 Probability estimation based on moments
For an accurate calculation of the reliability it would be interesting to expand
the probability density function of the model responses about a critical threshold.
Unfortunately, the density functions are unknown, especially close to the unsafe
domain with high failure probability. Existing methods such as polynomial expan-
sions, maximum entropy method or saddlepoint expansion, as reviewed in Hurtado
(2008), are frequently used within the reliability-based structural optimization re-
placing the expensive reliability analysis.

A more simple, non-intrusive approach for a rough estimation of the failure
probability is the calculation of the minimal sigma level σL for a performance-
relevant random response parameter Y defined by an upper and lower limitstate
value yu,lg := {Y |g(X) = 0} as follows

E[Y ]± σL · σY
!
≶ yu,lg

The sigma level can be used in conjunction with standard deviation to measure
the deviation of response values Y from the mean E[Y ]. For example, for a pair
of quantiles (symmetrical case) and the mean value we obtain the assigned sigma
level

σL = yg − E[Y ]
σY

(10)
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Figure 5: Convergence of a sequential
stochastic chance-constrained optimization
with successive interpolation of the nom-
inal response limit yd to ensure a target
sigma level σtL.

of the limit state violation, as explained in Fig. 4. Therewith, the non-exceedance
probability results in

P (E) = P ({Y |Y≶yu,lg }) = f(σL)

as a function of the sigma level, depending on the current distribution type of Y .
In the same manner failure probability

P (F) = P ({Y |Y > yg}) = f(σL) (11)

is given as a function of the sigma level. For example, assuming a normal distri-
bution of the random response Y with µY = 0 and σY = 1, as shown in Fig. 6, the
failure probability is given as a nonlinear function

P (F) = Φ(−σL) = Φ(−yg)

of the sigma level, as illustrated in Fig. 7. Therewith, a probability of P t(F) =
3.4 · 10−6 is achieved when the performance target σtL is 4.5 σ away from the mean
value.

Other values of acceptable annual probabilities of failure P t(F) depending on
the consequence of failure, significance warning or without warning before oc-
currence of failure and (non-)redundant structures can be found in engineering
standards, e.g. in DNV (1992).
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2.6 Methods solving stochastic optimization problems
In general, problem (1) to (6) is solved as a combination of a deterministic opti-
mization in the nd-dimensional design space and a stochastic analysis in the nr-
dimensional random space. Derivative-free global optimization methods are typi-
cally recommended to solve the sequential deterministic optimization problem, ac-
cording to Eq. (1) for highly nonlinear numerical models, especially fluid-structure
interaction models with probability-based constraints, whose objective and con-
straint function value may be computed with some noise or are non-computable
in any design points.

Evolutionary computation, as a special class of global optimization strate-
gies, imitates the natural processes like biological evolution or swarm intelligence.
Based on the principle “survival of the fittest” a population of artificial individuals
searches the design space of possible solutions in order to find a better solution
for the optimization problem. In this paper an evolution strategy using a class
of evolutionary algorithms is used. This strategy uses normally distributed muta-
tions, recombination, selection of the best offspring individuals, and the principle
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Figure 8: Basic concept of a decoupled loop of a reliability-based and variance-
based stochastic design optimization using global variance-based sensitivity analy-
sis and robustness evaluation to reduce the design parameter and random variable
space.

of self-adaptation of strategy parameters, as described in Bäck (1995).
As an alternative derivative-free optimization method, especially useful for ex-

pensive numerical computations, we use the adaptive response surface methodol-
ogy, as introduced in Etman et al. (1996); Toropov and Alvarez (1998); Abspoel
et al. (1996); Stander and Craig (2002); Kurtaran et al. (2002).

Mainly, there are three methods for solving these kinds of coupled problems
(1) to (6). The simplest and most direct solution method is a coupled approach
in which a full reliability analysis is performed for every optimization function
evaluation (see e.g. Choi et al., 2001). This involves a nesting of two distinct levels
of optimization within each other, one at the design level and one at the reliability
analysis level. This coupled procedure leads in general to an inefficient double loop
with a large number of design evaluations.

The single-loop method (see e.g. Kharmanda et al., 2002) simultaneously min-
imizes the objective function and searches for the β-point, satisfying the proba-
bilistic constraints only at the optimal solution, but needs a sensitivity analysis to
analytically compute the design gradients of the probability constraint.

An alternative method, used in the following, is the sequential approach (see
e.g. Chen et al., 2003). The general concept is to iterate between optimization
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and uncertainty quantification, updating the constraints based on the most recent
probabilistic assessment results, using safety factors or other approximation meth-
ods. This effective iterative decoupled loop approach can be enhanced by updating
the constraints during the internal optimization using sigma levels and statistical
moments

σLk

σtL
− 1 ≥ 0; σLk

= ygk − E[Yk]
σYk

; k = 1, ng

in place of the exceedance probability of the Eq. (3). Essentially, by means of
transformation in Eq. (11) of the probability-based highly nonlinear and non-
differentiable constraints to linear ones, these functions may be more well condi-
tioned for the optimization approach and we can expect a better performance of
the solution process. Of course, the transformation in Eq. (11) can only be used
as a rough estimation of the safety level and we have to calculate the probabilities
of failure using the reliability analysis, at least at the iteration end.

As shown in Fig. 8, in the initial iteration step a variance-based sensitive analy-
sis identifies the most important multivariate dependencies and design parameters.
After this, the deterministic optimization step results in an optimal solution for
which the sigma level is calculated using a robustness evaluation, based on a latin
hypercube sampling. The size of violation of the target sigma level is used to in-
terpolate the constraints using modified safety factors. Whereby, as an important
fact, the interpolation order increases continuously with each iteration step, so in
practice three or four iteration steps may meet our optimization requirements in
terms of robustness and safety. Fig. 5 shows a typical convergence of a sequential
stochastic chance-constrained optimization.

Furthermore, the optimization steps and the final reliability analysis run mostly
efficiently in the space of the current significant parameters. So every size of
problem definition (number of design and random parameters) is solvable within
all sigma levels.

The following numerical example with a very high degree of complexity is given
to demonstrate the solving power of this sequential stochastic chance-constrained
optimization by adapting the constraint um(d, γ) depending on interpolated nom-
inal response values yd.

3 NUMERICAL EXAMPLE

3.1 Fluid-structure interaction model
The stochastic optimization method presented here is applied to a CAD and CAE
parameter-based design optimization of a radial compressor shown in Fig. 9, in-
cluding material, process and geometry tolerances. In the example presented the
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Figure 9: Parametric CAD model of a one stage radial compressor, consisting of
a impeller and returnvane

target of the optimization process is to maximize the efficiency of the turbine
engine with respect to a limitation of the maximal v. Mises stress. Additional
constraints are defined by resonance of any eigen frequency with the rotational ve-
locity of the rotor. In total 36 optimization parameters and 49 random influences
are defined.

The Calculations were done with the software ANSYS Workbench and the
probabilistic and optimization tasks were performed with the optiSLang software
package.

As the method was already explained in Sec. 2, the results of the example are
summarized. For a extended version see Roos et al. (2013).

3.2 Decoupled stochastic optimization loop
Through the sensitivity analysis the design parameters were reduced to 10 design
variables with a relevant coefficient of optimal prognosis. The mean efficiency of the
initial radial compressor was 86%. The best design of the latin hypercube sampling
with an efficiency of 88.9% is used as start design of an evolutionary optimization
based on the surrogate model of the meta model of optimal prognosis and gives
with one additional design evaluation an efficiency of 89.3%. The distance of the
design stress to the 5% quantile of the yield strength is a result of the first global
safety factor of γI = 1.5 of the first iteration step. The target sigma level is
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Safety factor γi,
sigma level σi

L, σi
d and efficiency ηi

i γi σi
L σi

d ηi

0 2.4 - 1.27 · 108 86%
1 1.5 5.13 1.67 · 108 90.5%
2 1.32 3.6 1.75 · 108 90.8%
3 1.426 4.1 1.71 · 108 90.0%
4 1.46 4.48 91%

Table 1: Results for each iteration step i.

σtL = 4.5 to ensure a probability of failure P (F) = 3.14 · 10−6. In the following,
only the results of each iteration are shown in the Tab. 1.

Figure 10: Anthill plot of the ana-
lyzed N = 56 design evaluations of
the reliability analysis within iteration
step IV between efficiency η and yield
stress σy.

Figure 11: Response surface plot of the
reliability analysis design IV.

Of course, the probability levels of violation of the limit state conditions or of
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Figure 12: Flow angle of the initial de-
sign at the returnvane blades with sep-
arations along the blades

Figure 13: Flow angle of the optimized
design at the returnvane blades with a
much more uniform flow

the initial efficiency are only a rough estimation and at least a reliability analysis of
the final design is recommended, especially for small probability levels. With the
identification of the random sub domain directional sampling on adaptive moving
least square is used for reliability analysis (see Sec. 2.3). The moving least square
approximation is based on N = 56 design evaluations of an adaptive D-optimal
design of experiment, as shown in Figs. 10 and 11. The assigned failure probability
P̄ (F) = 2.5 · 10−6 ≤ P t(F) = 3.4 · 10−6 indicates an optimized six sigma design.

Finally, the Figs. 12 and 13 show the flow along the return vane blades. It
is distinctly and visibly how the separations have been reduced in the optimized
design and a more uniform flow is present.

4 CONCLUSIONS
In this paper an efficient iterative decoupled loop approach is provided for reducing
the necessary number of design evaluations. The applicability of this method for
real case applications is demonstrated for a radial compressor. Using the approach
presented, it is possible to improve the efficiency by about 5%. In addition we
obtain an optimized design which is insensitive to uncertainties and considers the
target failure probability.
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