

Virtual modeling of process variation for deep drawing simulations

Florian Quetting¹, Karl Roll

¹ Materials and Process Engineering, Daimler AG, Sindelfingen

Agenda

- Introduction
 - Product und process validation
 - Deep drawing process
- Product Development Chain
 - Definition

History of human invention: "Trial and Error"

"Trial and Error"

Reference: Tyrol Museum of Archaeology - www.iceman.it

Trial and Error in the automotive industry

Process variation and control

The results of deep drawing processes underlie variations, even if process control is being kept constant.

Deep Drawing Process

Deep drawing is one of the most important method for car body parts production.

Deep Drawing Process

Deep drawing is one of the most important method for car body parts production.

Quality / Failure criteria

1) Doege, Behrens: Handbuch Umformtechnik, Springer Verlag, Heidelberg, 2007; 2) Voestalpine

"Non robustness costs" can exceed initial investment expenditures

potential "non robustness costs"

initial tool investment

Reference: Grossenbacher, K.: Virtuelle Planung der Prozessrobustheit in der Blechumformung, 2008

Product Development Chain

Development

Feasibility study

Process planning

- Cracking
- Wrinkling
- Surface quality
- Spring back

Tool design and construction

- Spring back
- Process robustness
- Tool optimization and compensation
- Try out

Cost influence vs. cost estimation

With increasing product development cycle:

- The possibilities to calculate production costs increase.
- Costs to change manufacturing processes raise rapidly.
- The potential to influence production costs drops.

=> Process robustness should be taken into account in every product development step.

Development cycle time

- More products have to be developed in a shorter time.
- Classical methods are too expensive and too time consuming.
- => Virtual methods have to be used.

Virtual Models: Degree of abstraction

Simple

- Rigid Shells
- No tool or machine elasticity
- Uniform transmission of machine force

Medium

- Elastic tools using volume elements
- Direct transmission of machine forces

Complex

- Elastic tools using volume elements
- Force transmission and elasticity of machinery using elastic planes

Virtual Models

Reference: Roll, K.: State of the Art of Numerical Modeling in Sheet Metal Forming, Erlangen, 2012-03-14

Introduction > P.-Dev. Chain Virt. Modeling Example

Yield locus description

Model	σ_0	σ_{45}	σ ₉₀	R_0	r ₄₅	r ₉₀	$\sigma_{\rm b}$	r _b	Parameters	Free
Hill 48	X	-	-	Χ	Χ	X	-	-	4	0
Hill 90	Χ	_	_	Χ	Χ	Χ	Χ	_	5	0
Barlat '89	X	-	_	X	X	Х	X	_	5	0
Barlat 2000	X	Χ	Χ	Χ	Χ	Χ	X	X	8	1
Banabic 2005	X	X	X	X	X	X	X	X	8	1

Reference: Roll, K.: State of the Art of Numerical Modeling in Sheet Metal Forming, Erlangen, 2012-03-14

Example: Frame Rail E class

Example: Frame Rail E class

Input parameter: Distribution assumptions

AF	linear	correlati	on				
Mean	σ	Min.	Max.				
1.75	0.02	1.69	1.81				
0.01	0.33	-1	1				
21	0,33	20	22				
-							
0.382	0.0133	0.344	0.424				
0.449	0.0167	0.388	0.488				
0.76	0.05	0.61	0.91				
1.21	0.08	0.97	1.45				
0.97	0.06	0.78	1.16				
0.07	0.0015	0.063	0.077				
500	16.67	450	550				
Barlat '89							
Gosh							
Belytschko-Lin-Tsay							
3							

Delivery spec. no correlation							
Mean	σ	Min.	Max.				
_							
0.360	0.0133	0.340	0.420				
0.450	0.0133	0.410	0.490				
0.627	0.05	0.477	0.777				
1.1813	0.08	0.9413	1.4213				
0.903	0.06	0.723	1.083				
Barlat 2000							
Gosh							
Fully integrated							
5							

Example: Results - Thickness

Example: Results - Thinning

Example: Results – Effective Plastic Strain

P.-Dev. Chain > Virt. Modeling > Example

Summary

- Product development is facing increasingly shorter time-to-market cycles.
- Simultaneously, the complexity of production processes steadily increase.
- ⇒ This can only be handled by usage of virtual methods.
- Current mechanical material parameters used in quality control are insufficient to precisely describe material scatter.
- Virtual methods must be improved to incorporate real process and material scatter.
- Knowledge of real input scatter and distribution is evident for robustness analysis of deep drawing processes.
- ⇒ Further research is necessary to analyze real material scatter and to incorporate these variations into virtual models.

Summary

Thank you for your attention!

