

Robustness Analysis in CAE

08.12.2011

Srikanth Kethu

Agenda

•What is robustness ?

·Added-value

•Robustness Process in CAE

Case studies

Conclusions

What is Robustness ?

A system or design is said to be "**robust**" if it is capable of coping well with <u>variations</u> (sometimes unpredictable variations) in its operating environment with minimal damage, alteration or <u>loss of functionality</u>.

Why consider variations?

The real world is not perfect. In reality, all the components will have values that show scatter with respect to ideal values.

Examples:

Variations in sheet metal thickness, dimensions, material properties, external loads, etc.

Added Value

Added values :

- · Checks if variations in components result in the loss of functionality.
- · Identifies the crucial components that influence the functionality of a design.
- · Helps identify worst case scenarios for counter measures.
- · Leads towards optimisation.

Flow chart

Types of Input Parameters

·Surface tension

Density

Nozzle Diameter

...

Case Study: Robustness of Design (IIHS) 1/2

Info: Typical number of parametric combinations: 100 to 150

Case Study: Robustness of Design 2/2

Added Values (1/3)

A Prediction
Deterministic Model
In the deterministic model there are phenomena which are evident.
•These could be material separations, B-Pillar deformations etc.
·Confidence level of these are purely relevant to modeling assumptions.
Robustness Analysis
•In the stochastic model there are phenomena which are non-evident (just like test to test variations).
•Deformation patterns vary with parameters.
•This was also predicted in a case study.
·Some patterns seen from the robustness analyses were captured clearly in the test.

Added Values (2/3)

B) Confirmation

Deterministic Model

- · Design features necessary to improve performances (eg. Notches, beads, darts) are evaluated.
- · Functionality of these features can vary in tests.

Robustness Analysis

- · From Robustness Analysis, we can confirm the functionality of the design features by varying input parameters.
- · This helps in improving confidence in the design.
- · This can also help in test avoidance.

Added Values (3/3)

C) Counter Measures

Deterministic Model

- · Deterministic models do not always provide us with worst case scenarios.
- · During design development some critical areas might go un-noticed with ideal scenarios.

Robustness Analysis

- · Robustness analysis can provide with worst case scenarios, there by identifying potential critical problems.
- · These critical areas of concern, can be addressed with new design proposals/reinforcements.

Conclusions

- Robustness analysis significantly enhances the information out of a
 CAE model :
 - · Evaluation of the robustness of a design
 - · Evaluation of the numerical robustness of CAE models
 - · Prediction/Interpretation of hardware test
 - · Identification of worst-case scenarios
 - · Derivation of countermeasures

• ...

Questions ?