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Founded: 2001 (Will, Bucher,
CADFEM International)

More than 40 employees,
offices at Weimar and Vienna

Leading technology companies
Daimler, Bosch, Eon, Nokia,
Siemens, BMW, are supported by us

Software Development

optisLang

Dynardo is your engineering specialist

for CAE-based sensitivity analysis,
optimization, robustness evaluation
and robust design optimization.

CAE-Consulting

Our expertise:

e Mechanical engineering

e Civil engineering & Geomechanics
e Automotive industry

e Consumer goods industry

e Power generation
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Premium Consultancy and Software Company for
CAE-based Robustness Evaluation, Reliability
Analysis and Robust Design Optimization using
Stochastic Analysis

Dynardo is the consulting company which successfully introduced
stochastic analysis into complex CAE-based virtual product development
processes.

Recently, it is applied in the power generation industry, automotive
industry and high-level consumer goods industry

DYNARDO Field of Excellence
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Introduction of optiSLang

optiSLang
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Challenges in Virtual Prototyping

e Virtual prototyping is necessary for cost efficiency
e Test cycles are reduced and placed late in the product development

e CAE-based optimization and CAE-based robustness evaluation becomes
more and more important in virtual prototyping

— Optimization is introduced into virtual prototyping

— Robustness evaluation is the key methodology for safe, reliable and
robust products

— The combination of optimizations and robustness evaluation will lead
to robust design optimization strategies

*0 Soenne Senpg,
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optiSLang is an algorithmic toolbox for sensitivity analysis, optimization,
robustness evaluation, reliability analysis and robust design optimization.
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optiSLang is the commercial tool that has completed the necessary
functionality of stochastic analysis to run real world industrial applications in
CAE-based robust design optimizations.

optiSLang development priority: safe of use and ease of use!

optiSLang Field of Excellence
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Robust Design

Robust Design Optimization (RDO) optimize the design performance
with consideration of scatter of design (optimization) variables as
well as other tolerances or uncertainties.

As a consequence of uncertainties the location of the optima as well as
the contour lines of constraints scatters.

Design Variable 2

U Contour lines of objective function

Infeasible
= Design Variable |

To proof Robust Designs safety distances are quantified with variance
or probability measurements using stochastic analysis.
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Challenges of RDO in Virtual Prototyping

e With improvements in parametric modeling, CAE (software) and CPU
(hardware) there seems to be no problem to establish RDO (DfSS) product
development strategies by using stochastic analysis

e There are many research paper or marketing talks about RDO/DfSS.
e But why industrial papers about successful applications are so rare?
Where is the problem with RDO?

A NI I I TRITIT




ANSYS User Conferences © Dynardo GmbH © October 2012 C{u n(:] r‘\C"O

Successful RDO needs a balance between:

e Reliable definition of uncertainties
= many scattering variables (in the beginning) of an RDO task

= best translation of input scatter to suitable parametric including
distribution functions and correlations between scattermg inputs

e Reliable stochastic analysis methodology

— efficient and reliable methodology to sort out
important/unimportant variables

— because all RDO algorithms will estimate robustness/rel|ab|I|“tV""'""“*
measurements with minimized number of solver runs the proof
of the reliability of the final RDO design is absolutely mandatoryI

e Reliable Post Processing o
= Filter of insignificant/unreliable results ra .
= Reliable estimation of variation using fit of distribution functio/nsm/

e User Friendliness ¥

— establish automatic flows of best practice which minimize the
user input ,ease of use™ and maximize the ,safe of use"

= Finally non experts of stochastic analysis need be able to
perform RDO




DYNARDO ¢ © Dynardo GmbH 2012 Cqun(:]r“do

Robust Design Optimization - RDO
Robust Design Optimization combines optimization and Robustness
Evaluation. From our experience it is often necessary to investigate both
domains separately to be able to formulate a RDO problem. optiSLang
offers you either iterative or automatic RDO flows.
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When and How to apply stochastic analysis?

e When material, geometry, process or environmental scatter is
significantly affecting the performance of important response values

e When significant scatter of performance is seen in reality

and there is doubt that safety distances may be to small or safety
distances should be minimized for economical reasons.

o Iterative RDO strategies using optimization steps with safety
margins in the design space and checks of robustness in the space of
scattering variables

or

» Automatic RDO strategies estimating variance based or probability
based measurements of variation for every candidate in the
optimization space

are possible RDO strategies.
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Process Integration

optiSLang
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Process Integration

Parametric modeling as base for
e Customer defined optimization design space
e Naturally given robustness/reliability space

A 0

The CAE process
generates the

results according to
the inputs

Design variables:
Entities that define the
design space

Result variables:
measures from the
system

Scattering variables:
Entities that define the
robustness space
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optiSLang Process Integration

Arbitrary CAE-processes can be integrated with optiSLang. Default
procedure is the introduction of inputs and outputs via ASCII file
parsing. Additionally interfaces to CAE-tools exist.

} == === ===-======- G
Input 1 : Input File  application Output File: Output 1
I I
Input 2 : | output2
: T J I
Input n COutput n

Available interfaces in
optiSLang
v CATIA V5 interface

v ANSYS workbench
interface

v Excel Plugin

v Extraction tool kit
(ABAQUS, LS-DYNA)

v"Madymo positioner

Connected CAE-Solver: ANSYS, ABAQUS, NASTRAN, LS-DYNA,
PERMAS, Fluent, CFX, Star-CD, MADYMO, Slang, Excel,...
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Parametrize Editor

e optiSLang reads and writes parametric data to

and from ASCII B Input File: /heme/most/Dynardo/Lectureioptislang/Oscillate _ M %

e Parameterize functionality
Input file:
e Optimization parameter i et o s

m.f_.,“ E thome/mostiDynardo/Lecture/optislan —

O x

1 Settings Tree

e Robustness parameter Rbject create, re
e RDO variable

e Dependent parameter and variables
Output file:

e Response variable

e Response vector

e Signals

Problem definition section

e Optimization Constraints

e Robustness criteria

e Limit state function

e Multiple objectives/terms

read. .m
read. .k

reaad, D 0.
raad, . E

oreate, ,,

File name: /home, /mos

Flle type: Input flle

v P parameter tree
+ [Z] parameter section
?
¢ |=]whole file
i m
[
v [3) asclllatar_solution.txt
] E'whole file

=[5 oscillator_signal.txt
« eff) signal section
88, variable section

robustness section
reliabllity section

o (& objective saction
= constraint section
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Signals in optiSLang

e Motivation: numerous scripts were written for extraction, processing and
visualization of time or frequency signals

e Now signals are available in optiSLang (pre processor, solver, post
processor)

eDefinition at parametrize editor (multiple channel signal objects)
e Response parameters can be extracted via signal processing

e Response parameters and signals are available for post processing

channel UK of signal OUTPUT

channel UK of signal OUTPUT
— reference: channel UK_SOLL of signal OUTPUT_SOLL
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Pre and Post Processing

e The Pre Processing
— Open architecture, user friendly
parametrize editor and one klick
solution for ANSYS workbench
support simulation flow setup —

e Solving the RDO Task ——

— Easy and safe to use flows with
robust default settings allows
the engineer to concentrate on
his engineering part and let
optiSLang do the job of finding
the optimal design.

e Post Processing

— The Interactive case sensitive
multi document post processing
offers the important plots as
default
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Sensitivity Analysis

optiSLang

(Design Exploration)
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Robyst Design Optimization
Variance based Robustness
Evialuation Sensitivity tudy

Probability based
Robustness Evaluation,
(Reliabjlity analysis)

Single & Multi objective
(Pareto) optimization

Robust Design Optimization Methodology
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Sensitivity Analysis
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Sensitivity analysis

e Sensitivity analysis scans the design/random space and measures the

sensitivity of the inputs with statistical measures

e Application as pre-investigation of an
optimization procedure or as part of
an uncertainty analysis

e Results of a global sensitivity study are:

Sensitivities of inputs with respect to important responses
Estimate the variation of responses
Estimate the noise of an underlying numerical model

Better understanding and verification of dependences between
input and response variation

e Requirements for industrial applications:
- Treatment of a large number of inputs

Consideration of strongly nonlinear dependencies
Manageable numerical/experimental effort
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Stochastic Sampling Methods in optiSLang

Plain Monte Carlo Simulation (MCS)
e Independent generation of random samples

Latin Hypercube Sampling (LHS)

e Unwanted correlations removed with classical (fast) method
e Fraction of LHS looses its statistical advantages!

e Requires N=k+1 samples

Advanced Latin Hypercube Sampling (ALHS)
e Unwanted correlations are strongly minimized by optimization
e Exponentially increasing time effort (more than 50 variables)

Space-filling Latin-Hypercube Sampling (SLHS)

e Samples are generated to optimally cover design space

e In reduced space, the space filling property may be lost

e Huge time effort for many variables (more than 20 variables)
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Stochastic Sampling Methods in optiSLang
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Why do we prefer stochastic sampling ?

e Deterministic designs use maximum 3 levels for each variable

e LHS has N levels for each variable
» If we reduced the variable space be removing unimportant variables,
deterministic designs loose the information of these variables, but with

LHS this is not the case

e Example: 4 minor and 1 major important input variables:

‘I. o | i
o '.ﬁ.s'.'. ) % ... <
[ -
E i “ Eo
Bl . . 3

r?l i .~ Il. i -
L . ... f '

-1 -0.5 1] 0.5 1 1.5 2 2.5 3 -1 -0.5 0 0.5 1 1.5 2 2.5 3

INPUT: x3 INPUT: x3
LHS, 100 samples Full factorial, 243 designs
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Identifying important parameters

From tornado chart of linear correlations to the Coefficient of

Prognosis (CoP) = 2 srran ot s
: |
é Y o ".':"', . 14

1G

[+19
E"' Coeffickents of nosis {uslgg MaoP)
ull model: CoP = 99
E‘" h T T T
- ‘E’N INPUT: massflow_scale |
4 %
('] 8 E
1]
} i { [=18
075 -05 -025 0 025 05 (.75 I5,.. -
Parameter vs. OUTPUT: displ7[1] o
=

20 40 60 80
CoP [%] of OUTPUT: femur_left_04

Will, J.; Most, T.: Metamodel of optimized Prognosis (MoP) - an automatic approach for user

friendly design optimization; Proceedings ANSYS Conference 2009, Leipzig, Germany,
www.dynardo.de
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Statistical measurements

Correlation Measurements

e Coefficients of pairwise linear/quadratic
correlation is the simplest correlation
measurement

e Multi-dimensional non-linear correlation can be
detected using advanced meta models (Neural
networks, Moving least squares,..) 075, DF 028 o 02 05 075

1G

s, DUTPUT: displ 7[1]

Coefficient of Importance (guadratic
full model; -djﬁ':wd R? im Bl % )

INPUT: sﬂrﬂm

:i::i%:%:n ';.5.'-%1#" E‘"
Goodness of fit Measurements (CoD)
e (Goodness of Fit (Coefficient of Determination -

CoD) summarize correlations on the meta 0 2 40 80 80
models
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Dynardo's Coefficient of Prognosis (CoP)

e CoD is only based on how good the
regression model fits through the
sample points, but not on how good
the prediction quality is

e Approximation quality is too
optimistic for small number of
samples

Explained variation

e For interpolation models (MLS,
Neural Networks, Radial basis
functions,..) with perfect fit, CoD is
equal to one

e CoP measures the forecast quality
of regression model using an
independend test data set

1.00
0.90
0.80
0.70
0.60
0.50
0.40

COD

COD,,
COP M-S
(;)OP MLIS 3Var

guad
guad

5Var

29

50

100

200

Number of samples

500

Prediction quality is better if
unimportant variables are
removed from the
approximation model

To minimize necessary number of sample optiSLang includes filter
technology to select significant variables (significance, importance &

correlation filter)
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Meta model of optimal Prognosis (MoP)

« optiSLang provides a automatic flow to reduce variables and generate the
best possible response surface for every response with a given number of
solver calls [Meta model of optimal Prognosis (MoP)] and checks Prognosis
quality of the meta model.

e MoP solve following important tasks
e We reduce the variable space using filter technology= best subspace

e We check multiple non linear correlations by checking multiple
MLS/Polynomial regression = best Meta Model

e We check the forecast (prognosis) quality using a test sample set

= Coefficient of Prognosis (CoP) s it st 04
e CoP/MoP allows to minimize the number of solver runs;_ . | if
2
e Final MOP can be used for optimization purpose ;u
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MOP allows "No Run to Much”

With MOP functionality we can start to check after 50..75 runs independent
on the number of input variables (5 or 100)

= can we explain the variation

= which input scatter is important

= how large is the amount of unexplainable scatter (potentially noise,
extraction problems or high dimensional non linear mechanisms)

=| mﬂi‘ﬁqﬁ:: 7 %
4
ol mods: Cap o 7 ) :
ﬂ ¥ s * 14
“ :nngﬁ;&z ] o % e %
- 10
]
? :
& k E
2 2
= 0
= J '
-4
-, -ﬁ
g 20 a0 80 80 ¥ 3 k% @ .
CoP [%] of OUTPUT: Response ¥ =1 o
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Sensitivity Analysis

Determining the sensitivity of stiffness and damping variation due to the
tool center point position: 104 varying parameter

[=1 3

mmcgms 110" [walus) 1HMHI_'I=.I'M1

Solver PERMAS: frequency analysis up to 1000 Hz

SimCAT INDEX HELLER

Broos, A.; Kehl, G.; Melchinger, A.; Rock, S.; Will, J.: optiSLang in der Entwicklung von

Werkzeugmaschinen, Proceedings WOST 3.0, 2006, www.dynardo.de
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Sensitivity Analysis
Better understanding of dynamics, e.g. specially damping mechanisms:
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Will, J.: Variation Analysis as Contribution to the Assurance of Reliable Prognoses in Virtual

Product Development, Proceeding NAFEMS Seminar “Reliable Use of Numerical Methods in
Upfront Simulations” March 2007, Wiesbaden, Germany, www.dynardo.de
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Multidisciplinary Optimization

optiSLang
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Multidisciplinary Optimization with optiSLang

Sensitivity study - identify the
CAD and CAE Parameter most important parameter

definition and check variation/COI o
response values

[—>
minimize

Define optimization goal
<:| and optimize

Validate optimized
design in CAE and CAD
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Deterministic optimization problem

e Design variables

Variables defining the design space
(continuous, discrete, binary)

e QObjective function
Function f(x) has to be minimized

e (Constraints, State variables
Constrain the design space,
Equality/Inequality restrictions
are possible

e Most optimizers require
constraints and objectives
with same order of magnitude
(use scaling if not fulfilled)
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Example: damped oscillator

e Time-dependent displacement function

e Optimization goal: Minimize maximum
amplitude after 5s free vibration

PILBILRTE LI DLDS LN

e Optimization constraint: 1.0 : | vibration - i
Envelope

e Optimization parameter bounds &
constant parameters:

Displacement x [m]
(=]
=]

0 2 4 6 8 10
Time t [s]

Dynardo e optiSlang Seminar

Example damped Oscillator
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Objective function

e Stepped objective function by e Smooth objective if amplitude is
using maximum elongation approximated with envelope

Dynardo e optiSlang Seminar

Example damped Oscillator
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Solver validation with MOP

TR B

4.5 4
3.532'5215 E
m el O

:

-

100 time steps

| ;
o 0

CoP [':fd w:lg..m

- 5o P k. |
20 BO L] 100
CoP I!':?d DUTPLIT: =_man

e If time discretization is too coarse, objective function is distorted
e MOP(100 LHS): 100 time steps CoP=99%, 10 time steps CoP=83%

Dynardo e optiSlang Seminar

Example damped Oscillator
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Gradient based Optimization

NLPQL (Nonlinear Programming Quadratic Line Search - Prof.
Schittkowski)

Recommended area of application: reasonable smooth problems

Fast convergence in case of:
Function & gradients can be evaluated with sufficiently high precision
The problem is smooth and well scaled

Local optima, expensive gradients
Use with care for binary/discrete variables
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NLPQL on original and approximated objective function

Envelope (18 solver calls) Direct, 100 time steps (29 calls)

Dynardo e optiSlang Seminar

Example damped Oscillator
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Design of Experiment

Eoshal linear

full facteorial (m=3}
L L ]

] ®
i
[ !
- e® |e
[
Hgr e e el ks
}:-J[ .-;':J" .-"-f
: I .I'_ iy __I:-
| i
! |
;::[ -f']'l_______ ,:_
-
e _eo _o

Method principles & properties:

.l./'.

e Values for input parameters
sampled at deterministic points

e Number of simulations strongly
depends the on number of input
parameters (k)

central composite

e . e
: ! ® - ,
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Global Response Surface Methods

+ Global polynomial response surface approximation is effective for a
small set of variables n <5 .. 7

- Number of necessary support points for reasonably precise RS
becomes very high in dimensions > 10

Number of*support points” e D e £ e
Linear approximation Quadratic approximation”
Number of || Koshal D- Full Koshal D- Full Central
Variables || Linear | optimal® | factorial Quadr. | optimal? factorial | composite
n (lincar) | (m =2) (quadr.) (m=23) (CCD)
1 2 2 2 3 3 3 3 3
2 3 4 4 6 9 9 9 &
3 1 6 8 10 15 27 15 B
4 5 8 16 15 23 81 25 B 1.
5 6 9 32 21 32 243 43 =
6 7 11 64 28 42 729 T E .
7 8 12 128 36 b4 2187 143 -
3 9 14 256 45 68 6561 273 E
9 10 15 512 % 83 19683 531 £
10 11 17 1024 66 99 59049 1045
11 12 18 2048 78 117 177147 2071
12 13 20 4096 91 137 531441 4121
13 14 21 8192 105 158 | 1594323 8219
14 15 23 | 16384 120 180 | 4782969 16413
15 16 24 | 32768 136 204 | 14348907 32799
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Scanning the design space with LHS

|x|_max

510

4

.543‘5325
m

e 100 Latin Hypercube samples
e Best design:

Al

215 195 4

Dynardo e optiSlang Seminar

Example damped Oscillator
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Quadratic polynomial regression, D-optimal and LHS DOE

D-optimal (9 solver calls) LHS (100 solver calls)

Always verify best design with solver!

Dynardo e optiSlang Seminar

Example damped Oscillator
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Using MOP as solver

e Reuse of samples from sensitivity analysis

e Smoothing of noisy objective function

e High CoPs (=90%) are required for objective and constraints
e Always verify best design with solver!

Dynardo e optiSlang Seminar

Example damped Oscillator
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Adaptive Response Surface Methods (Local)

Adaptive design of experiment — design space

P ———— @ Starting with a large
| | subregion

T“‘*:“‘l‘gf oo @ lteration moves and
e shrinks the subspace till a
T ek S solution converges to an
: i i optimum
! o 6 @ Approximation of the
i responses with low level
. design space | trial function (e.qg. linear
o and quadratic polynomial
functions)

e

+ Fast catch of global trends, smoothing of noisy answers

+ Adaptive RSM with D-optimal linear DOE/approximation functions for
optimization problems with up to 5..15 continuous variables is possible
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Design variable 2

Design variable 2

Adaptwe Response Surface Methods (Local)
1. Iteration

.__r__________________:_ ____________
@ o .
4} s P .
< S D---------- I -1

) Design variable 1 g

I i

Design variable 1

objective

objective
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Local ARSM with linear polynomial

e ARSM (local) with linear D-optimal
design

e Good convergence for noisy objective
function

e 105 solver calls

Dynardo e optiSlang Seminar

Example damped Oscillator
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Adaptive Response Surface Method (Global)

Global Moving least square approximation
Interpolation can be forced by regularized weighting function
Adaptive DOE with reuse of all calculated designs

Better approximation of local effects than polynomial functions
Global optimization on approximation function
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Global ARSM with Moving Least Squares

e ARSM (global) with linear D-optimal and interpolating MLS
e 62 solver calls, mainly in important region of design space

Dynardo e optiSlang Seminar

Example damped Oscillator
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Response Surface Methodology

e Based on design of experiment (DOE)

e Global polynomial response surface
approximation are effective for a small amount
of variables k <5, but not very accurate

e MOP gives sufficient results if CoP is high
enough

e Adaptive (local) response surfaces are effective
for a medium amount of variables k < 15, but
only result in local approximation

e Adaptive (global) response surfaces (moving "
least square) stay global and localize at the o
same time. They may be still effective for &
medium amount of variables k<10 .. 20

06
04

oz
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Evolutionary Algorithms (EA)

Imitates Evolution ("Optimization”) in Nature:
e Survival of the fittest
e Evolution due to mutation, recombination and selection

e Developed for optimization problems where no gradient information is
available, like binary or discrete search spaces

Evolution Strategies Genetic Algorithms

R s T [ES] [GA]
No, 544,818 Fatented Aug. 20, 1R90, EA g GA
G2 Q
U g G1 G2 G3
0 Wa 0 0 {
4 \g 00N\
61 n 0 0 [
0 0 0 0 4
0 0 0 18
0 /s N
0 )h 8-A N0
o 0/ N7
0 Wa
a
{
0
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Toolbox for Natural inspired Optimization

— Optimization strategy

~Choose algorithm
4= Which algorithm shall be used 7: Evolutionary Algorithm (EA) - global search
Evolutionary Algorithm (EA) - global search
~NOA parameter set Evolutionary Algorithm [EA) - local refinement

Particle Swarm Optimization (P50) - global search
® Create resp. Npaicie Swarm Optimization (PSO) - local refinement
Simple Design Improvement (S0D)

£* Will be created, if not present in project directory : |noa_parameters set

|' Create resp. Modify

i How many designs may violate the input constraints 7 { % ) |1 0

~ Do not solve designs which violate input constraints 7 : L]
e Global and local search for EA Intalization . .
e Global and local search for PSO | ] [EndpofﬁJ 2ton) L Soluton ]
e Simple design improvement (loc [ Evalustion ] /,[ Stop? ]\
search) N population ] [ selection ]
e Genetic algorithm (global searct
adaptive mutation to reduce [Rep'acem\e”t] [ C}'°ss°"e" )
number of infeasible designs) [ Eeliodon | [ Mutation )

N /

[ Population ]
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Genetic algorithm

e 99 solver calls

Dynardo e optiSlang Seminar

Example damped Oscillator
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EA with global and local search

Global search (102 solver calls) Local search (51 solver calls)

Dynardo e optiSlang Seminar

Example damped Oscillator
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Particle Swarm Optimization (PSO)

- swarm intelligence based biological algorithm

- imitates the social behaviour of a bees swarm searching for food

. Selection of swarm leader including archive strategy

o Adaption of fly direction

o Mutation of new position

° Available for single/multi objective Optimization

Objective Pareto Plot
o = ' ' 1 3
*  Global best design
s/ * Objective pareto des...
a'l‘i?t-‘m T
{QL‘ZQ_O designs PSO
| foe 3 J
: Wiy |
S

g hlll"“i
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PSO with global and local search

PSO global (220 solver calls) PSO local (198 solver calls)

Dynardo e optiSlang Seminar

Example damped Oscillator
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Simple Design Improvement

Next Center

e Improves a proposed design without extensive knowledge about
interactions in design space

e Start population by uniform LHS around given start design
e The best design is selected as center for the next sampling
e The sampling ranges decrease with every generation
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Simple Desigh Improvement

e 318 solver calls

Dynardo e optiSlang Seminar

Example damped Oscillator
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Nature inspired Optimization

e Evolutionary algorithm
— Suitable for global and local search
— Search for new designs and
evolutionary improvement of designs

e Genetic algorithm
— Search for new designs
— Search for feasible design islands with
additional local optimization (e.g. NLPQL)

e Particle swarm optimization
— Suitable for global and local search
— Risk of local optimum is higher as with EA
— Local convergence closer to optimum

e Simple design improvement
— Very robust but low efficiency
— Not developed to find optimal design
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Multi Criteria Optimization Strategies
Pareto Optimization using Evolutionary Algorithms (SPEA2)
nbjecuveﬁremp'bt

"

*  Current archiv
i wmﬂlﬁ-n

Parete front

¥ Genetik 200 Runs * Parsto front designs

= Pareto 200 Runs
= Pareto 4000 Runs

meis [1e8]

mazx. Vertikalverschiebung [m]

. e L] [} e
L]

';"4/-—\—____'_.-.._____\__ =
1] 500 1000 1500 2000 2500 3000 3500 4000 0%

L]
Masse [ka] T

2000 2sp0 3000 3500
k. obj1
e Only in case of conflicting objectives, a Pareto frontier exists and Pareto

optimization is recommended (optiSLang post processing supports 2 or 3
conflicting objectives)

o Effort to resolute Pareto frontier is higher than to optimize one weighted
optimization function
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Gradient-based Response surface
algorithms method

e Most efficient method if ¢ MOP allows a fast
gradients are accurate check for design
enough improvement

e Consider its restrictions e Adaptive RSM is the
like local optima, only method of choice for
continuous variables a small set of
and no solver noise continuous variables

(<15)

AT :
ru'?‘%"?u.ﬁs' ; £ ﬁlﬁ.s'l"

o -
._L v"‘l‘?::zi*'h.}s 1 u':"’"'

When to use which algorithm?

Natural inspired
Optimization

e GA/ES/PS copy
mechanisms of nature to
improve individuals

e Method of choice for
Pareto Optimization Tasks

e \Very robust against
numerical noise, non-
linearities, number of
variables,...
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Sensitivity Analysis and Optimization

1) Start with a sensitivity study using 2) Identify the important parameters
the LHS Sampling and responses using meta model
technique

- understand the problem

- reduce the problem

i o
o

\mmuxnwmnnun

Scan the whole Design Space

Understand the
Problem using
COP/MOP Y ﬁ%f;";! _:m.#;ﬂ :

Search for Optima Aun gradient based or biological

(AR based optimization algorithms at
Ve = optimal meta model (MOP)

4) Run an ARSM, gradient based or biological based optimization algorithms
with additional solver runs
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Optimization of a Large Ship Vessel
EVOLUTIONARY ALGORITHM

e Optimization of the total weight of
two load cases with constrains
(stresses)

e 30.000 discrete Variables

e Self regulating evolutionary
strategy

e Population of 4, uniform
crossover for reproduction

e Active search for dominant genes
with different
mutation rates

Solver: ANSYS
Design Evaluations: 3000
Design Improvement: > 10 % 0

Stahlvolumen

0 100 200 300 400 500 600 700 800
Generationen

Riedel, J.: Gewichtsoptimierung eines Passagierschiffes, Bauhaus Universitat Weimar,

Institutskolloquium, 2000, Germany, www.dynardo.de]
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Optimization of see hammer

Dynamic performance optimization under weight and stress constraints using
30 CAD-parameter. With the help of sensitivity study and optimization
(ARSM), the performance of a deep sea hammer for different pile diameters
was optimized.

Initial Design valid for Optimized design valid for
two pile diameter four pile diameter

Design Evaluations: 200 times 4 loadcase
CAE: ANSYS workbench
CAD: ProEngineer
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Optimization of a stant

Performance optimization
under geometry constrains
constraints using 15 CAD-
parameter. With the help of
sensitivity study and
optimization (ARSM), the
performance was optimized.

- Step wise approach to
generate a successful design
space for optimization

Design Evaluations:
Process chain: Solid Edge -
ANSYS - optiSLang

[ Pomit] i) Bt Bedater] %
Fir ot v ks Took Rl | | T e B @ M B Shweedesvs - Jsew - 10 oW 5] ) -
(! B S0 REaaRa T
Bt 1.0 (T S} «@-J-0- =oE e

by courtesy of

& CORTRONIK
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Optimization of Tennis Racket

r N
The challenge in tennis racket optimization is to find a AT m . .
optimal design of the composite structure. EEEEE e
Consideration of production constrains of multiple composite - HH
layer orientation and thickness lead to a discrete

optimization task with conflicting goals of mass and
stiffness (playability).

Therefore optiSLang Pareto optimization using Evolutionary
Algorithms was used.

Dbjective Parets Plot

RESPONSE DATA: (Best Design #208) Best Design #208

T T T

| == Pareto front

| * Objective parely designs

| == Current archiv
- -

10

8
Mir_Ma
+0.000155 0.000165 0.000175 0.000185
T T T

B

20 40 60 B0 100
Relative Sice to Response Range [%)

P

Mumber of Parameter

Design Parameter =210
Design Evaluations: 200
CAE: ANSYS Workbench 5

a
Relative Size to Bounds [%]
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Parameter Update
and System Identification

optiSLang
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Calibration using optiSLang

1) Define the Design space using

continuous or discrete optimization
variables

2) Scan the Design Space

- Check the variation

- Identify sensible parameters and
responses

-  Check parameter bounds
extract start value

Simulation

| |

"\ = b
F.a) — reterence: channsl LUN_SOLL of sgnsl OUTPUT_SOLL
" I..IFA . - ’ ———

optiSLang 5 & R
Best Fit L e

3) Find the best possible fit ! ot i

- choose an optimizer depending on the sensitive = som . ®
optimization parameter dimension/type
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Calibration and Optimization of carbon fiber
airplane cockpit body using ANSYS and optiSLang

Body was tested regarding crash
performance (German TUV)

1. Calibration of test results

2. Optimization of Crash
performance of the airplane
cockpit carbon fiber body to
withstand the next higher crash
loading class
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Parametrization of carbon body using ANSYS ACP

92110
92125
Z200g
CF140
CF_AF_2Z00g
Sigrake:x J‘.
CFza85
92145
3_Faches_z00
ﬂ Stackups

=< 5ub Laminates
i Haubenrahmen_13

L lage_12_1_3_Sigrakex

- geometric modeling using ANSYS WB

- carbon fiber material definition (stiffness/strength/damage) using ANSYS
Composit Modeller (ACP)
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Calibration of test results

INPUT: f_d vs. DUTPUT: Force_Reaction_Z, r = -0.607

3 *Oufg.g: Fom_q?ﬂ:lﬂﬂn hfﬂa
.ll
. L]
g SEERRL

-

105 L1 148 12 125 13
INPUT: 0

3 ] 15 20
From. DOE  Samples 97/98 (2 failed)

Via sensitivity study the important model parameter are identified, via

Evolutionary optimization the test is calibrated:
- very good fit of test results!
- identified model is qualified for optimization

- the safety margin of the calibrated model is large enough

identified fabric thickness factor 1.275 ! Fabric thickness (160g): 0.21mm

- 0.267mm

Very good agreement between test and simulation
- delta deformation maximum 2-3mm
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Optimization for higher crash loading

objective: minimum Mass

constraints: maximum load, no critical damage of structur
(irf-values)

With optimization of position, orientation and thickness of

important fabric layers the load could be improved by 50%
having a mass increase 1.6% only!

For optimization evolutionary algorithms
with Default Settings are used.

picture: Andreas Lutz, Bernd Weber
Schempp-Hirth Flugzeugbau
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Part /
Applications

optiSLang
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Sensitivity of Passive Safety Systems
How Sensitive Is the CAE Model?

To protect occupants from the risk of serious injury in event of a side impact,

passenger vehicles are designed to fulfil legislative and consumer impact test
requirements.

Facing increasing competition in virtual product engineering using sensitivity
analysis, optimization and robustness evaluation become necessary.

Impact velooity = 50 kmih

_

Total mass = 1500 kg
.

¢ Impact relerence distance (RD)

Figure 5. Sled model with EuroSID2 Figure 2. Side impact |IHS barrier schematic
by courtesy of

Ionescu, V.; Wernicke, P.:Assessement of side impact simulation using ABAQUS/Explicit,

Proceeding SAE Conference, 2006
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Sensitivity of Passive Safety Systems
Which Design Variable Shows Importance?

In an early phase of the product development, a simplified model of the side
crash resistance is used.

Sensitivity analysis, using the stochastic sampling procedure and statistical
post processing, identifies the most important design variables and estimates
the variation of responses.

OUTPUT: Iwr_rib_defi

Coefficient of Detaminatim {Iinaar}
full model: R2= B1.6

[ S —— T L

0.12

0.08

PDF

0.04

N =

=35 ~3I} -25 =20 -15 20 40 60 80
OUTPUT: Iwr_rib_defi R [%] of OUTPUT: Iwr_rib_defi

Figure 6 Sled model input parameters

by courtesy of BMW AG




DYNARDO ¢ © Dynardo GmbH 2012 dqnopdo

Optimization of Passive Safety Systems
In small parameter dimensions ARSM is used for optimization:

e After understanding the sensitivities, an optimization task can be defined

e Adaptive Response Surface Methodology is used to optimize the
subsystem

e Based on that information, further optimization on more detailed sled and
side crash models will follow

Best Design #85

Parameter History

\\*' Upper bound
3 ~*= Lower bound
2 @ Iteration history (abdomen_pos) |
S \ ]
=N
¥
2 a 5 8 |

i
il

6

5

4

Responss
' 30 35

Numbeg of Parameter

2

Parameter
25

1

100 10

Iteration Number

| i 40 60
F] 4 6 8 10 12 14 Relative Size to Bounds [%]
From: DOE ; Samples B4/84 (0 failed)

Figure 8. Linear correlation structure
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Large Scale Multidisciplinary Optimization
Multidisciplinary Car Concept Optimization I

e Objective: weight reduction

e Performance constraints: stiffness constraints, eigenfrequency and
eigenmode constraints, eigenfrequency distances, NHV constraints
limiting acceleration and acoustic peaks, stress constraints)

e Loading: is defined with 8 static load cases (bending, torsion ,..) 3
quasi crash load cases, modal analysis and frequency analysis

The design space is
defined with 1544
geometry variables.

2

=

o Difficulties:
- A large amount (99.99%) of the high

dimensional design space is violating constraints

— Very limited subspace has interesting weights

— All best practice designs violate the constraints

— Conflicting character of weight reduction and performance
conditions
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Large Scale Multi disciplinary Optimization
Multidisciplinary Car Concept Optimization II

e Result in weight reduction: 5.4 % compared with state of the art
gradient based optimization strategy

e Summary of successful hybrid multidisciplinary strategy:

- Sampling using parameter hierarchy and best practice design know-
how

— Global optimization (island search) using genetic algorithms in
optiSLang

— Cluster analysis

— Local optimization using
gradient based optimization

4 Properties mit Fakt. 038
41 Properties mit Fald. 059
Bl e ! wwit Fa 07

W Presserties il Fald O
146 Properties mit Fake. 1.00

i Privpettien mit Fakt. 156
5 Propertles mlt Fala, 441

*_i_,n
Picture: Weight difference of best design
cluster 1 and reference solution

J. Will, C. Bucher, J. Riedel, I. Raasch: Search for alternative car concepts with OptiSLang,

Proceedings 22. CAD-FEM Users Meeting 2004, Dresden, Germany, www.dynardo.de
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FCM Parametric Modeller

Create concept models fast and easy with surfaces ready to
Step 1: Wireframe

Use design data, CAD-data or meshes as
inputs or create something new and
revolutionary from your mind

Intuitively position points by drag and drop
with compass

Step 2: Cross Sections

Take CrossSections from a company-wide
library

Use FCM to create sections through any
existing geometry or meshes

Use CATIA's sketcher functionality

Step 3: Water-tight Surfaces

Create frame-like structures with FCM Beam,
Junction and Map features from Cross
Section to Cross Section

=>The result is a parametric CAD

model with high-quality surfaces that
are ready to mesh. _
Create Surfaces without gaps or overlaps

Source: Schmid; FCM - Fast Concept Modeller; Optimization of full vehicle concepts using Beam

models; Weimar Optimization and Stochastic days 2010.
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FCM Parametric Modeller and Analysis Pre processor
Fundamental desigh changes can be performed without update errors

Flat FCM parametric allow stable
changes

Modifications can be easily
performed also for non-CAD-
experts. Model remains water-
tight all the time.

Example for stable FCM parametrics: stretching
the whole rear of the vehicle

Create optimal design by using FCM in the loop with optimization
software:

FCM parameters can be manually changed from within CATIA or from outside.
Optimizers as OptiSLang access geometry and CAE parameters

For each new design, shell meshes can be created automatically through
Batchmeshing.

Source: Schmid; FCM - Fast Concept Modeller; Optimization of full vehicle concepts using Beam

models; Weimar Optimization and Stochastic days 2010.






