

Structural Design Optimization of Transformer Tanks using optiSLang and ANSYS

Prachi Khullar

CG Global R&D Centre

Crompton Greaves Limited

Name :Prachi Khullar, Deosharan Roy Division: CG Global R&D Centre

Contents

- Introduction
- Case Study 1
 - > Problem Description
 - > Parameter Optimization of transformer tank
 - > APDL macro and Optimization variables
 - > Integration with OptiSLang
 - > Results and Discussion
- Case Study 2

Introduction

• Power transformers

Name :Prachi Khullar, Deosharan Roy Division: CG Global R&D Centre

- The pressure and vacuum tests
- Customer's requirement High Quality design, High performance, low cost.
- Optimization process is a complex process.
- FEA packages and optimization softwares enhanced the designer's capabilities.
- Structural optimization and design improvements of transformer tank assembly using ANSYS11 and OptiSLang software.

Case Study 1-Problem Description

• Objective:

The objective is to minimize the weight of transformer tank keeping it Structurally safe at the same time. This has been achieved by effective usage of ANSYS and OptiSLang capabilities.

- Formulation of problem includes:
- A. Parameterization
- B. State variables and objective function
- C. APDL macro
- D. Integrated use of ANSYS & OptiSLang

Flowchart showing Automation of Optimization

A. Parameterization

The design parameters which would be varied i.e. the driving parameters are listed below:

- tb: stiffener thickness
- bw: stiffener breadth
- bh: stiffener height
- sl: stiffener length
- n: number of stiffeners present in span A
- x1: distance of stiffener from side
- n2: number of stiffeners present in span B
- x3: distance of stiffener in span B to last stiffener in span A (as shown in figure)

B. State Variables and Objective Function

Smart solutions. Strong relationships.

State Variable-

- The limitation on mechanical strength (stress limitation parameter)
- Instability (deflection limitation parameter)

Objective Function-

• Total mass of tank assembly

C. APDL Macro

- APDL macro has been used for:
 - Modeling transformer tank and stiffener arrangement in ANSYS
 - Applying boundary conditions loads
 - Solving for vacuum test simulation.
- APDL also writes final results-state variable and objective function values in an output text file. This is required for integration with OptiSlang.

4549.8217

APDL

Input and state variables are needed to be re-defined in OptiSlang.

- 1. The range/limit in which the input design variables can vary are defined.
- 2. Constraint on permissible value of state variables:
 - Maximum equivalent deflection
 - Maximum equivalent stress
 - bw (stiffener width) => bh (stiffener height)

3. Evolutionary Algorithm method has been used for calculating global optimum solutions with specified constraint functions and combination of existing finite element analysis.

D. Integration of ANSYS with OptiSlang

Smart solutions. Strong relationships.

Results and Discussion

Results and Discussion

Evolutionary Algorithm method used for calculating optimized tank design parameters. Result of optimized design set:

FEA Simulation Results: Maximum deflection plot

Maximum deflection observed is 9.86 mm

Maximum deflection observed is 9.81 mm

Smart solutions

Strong relationships.

Name :Prachi Khullar, Deosharan Roy Division: CG Global R&D Centre

FEA Simulation Results: Equivalent Stress plot

Smart solutions.

Strong relationships.

Conclusion

Properties	Improvement
Equivalent stress (MPa)	17.31 %
Equivalent deflection (mm)	0.5 %
Tank mass (kg)	9.91 %

- Tank was further optimized by changing the profile used on short sides and inputs from electrostatic and electromagnetic optimization.
- Optimized transformer tank and cover design has been validated under all mandatory loading conditions.
- Recommended optimized design achieved an overall weight reduction of 15.6
 % of existing tank weight or 1037 kg. It also resulted in saving 2706 liters of oil.
- Fully automated optimization process for transformer tank is established.
- This methodology can be used for other products also with proper parameterization of problem.

Case Study 2-Problem Description

Objective

Design validation of DT tank assembly under pressure load and modifications for radiator wall to reduce stress and deformation.

- Description
- > Baseline tank design should be able to withstand specified pressure load.
- > Modify the design to reduce permanent deformation of radiator wall.
- > Optimize the final design to minimize cost and weight of complete assembly (with focus on radiator wall).

Name :Prachi Khullar, Deosharan Roy Division: CG Global R&D Centre

A. Parameterization

- Design variables shown in Table no. 1 have been considered for optimization of tank assembly.
- A range of design concepts have been obtain as a result of various combinations of design variables which satisfies the constraints of equivalent stress and maximum deformation.
- Detail analysis has been repeated for the best design

Variable Name	Design Variable	Values
gh	Gusset Height	a1,a2,a3
gw	Gusset width	b1,b2,b3
gthk	Gusset Thickness	c1,c2
Critical_thk	Thickness of Section A	d1,d2
N	Number of Gussets	e1,e2,e3

Note:

- Design validation of baseline design has been carried out under specified loading conditions.
- These results have been considered as benchmark for further design optimization.

B. State Variables and Objective Function

Results and Discussion

Input Variables for best design

State Variables for best design

Smart solutions. Strong relationships.

Results and Discussion (FE Model)

AVANTHA

Boundary Conditions:

- Specified uniform pressure applied on walls of the tank and top cover.
- Bottom support plates constrained in all directions.

Maximum Deformation Plot

Maximum deflection observed is 7.2 mm

Maximum deflection observed is 1.3 mm

Equivalent Stress Plot

Name :Prachi Khullar, Deosharan Roy Division: CG Global R&D Centre

Conclusion

- Deformation has significantly reduced with addition of optimum number of gussets on section-A.
- Equivalent stresses are also observed to be within allowable limit near section A, except few locations which are showing local high stresses near gussets.
- This exercise has been repeated for various similar tank assemblies (of different ratings) where complete automated procedure of optimization using optiSLang and ANSYS has been used.

References

- Oliver Konig, Marc Wintermantel. CAD-based Evolutionary Design Optimization with CATIA V5. EVEN - Evolutionary Engineering AG, Zurich, Switzerland.
- ANSYS 11.0 Help
- OptiSLang 3.2.0 Help
- Prashant Bardia, Optimal Support Locations and Component Placement for Electronic PCB Assembly towards minimizing Vibrations. October 2010 ANSYS India Conference
- P Radhaswamy, P Velrajan, P Duraimurugan and T. Andrew. Automation of Aircraft Component Roof Fitting Clamp Optimization using ANSYS Workbench 11. October 2010 ANSYS India Conference
- Fernando Batista, Hélder Mendes, and Emanuel Almeida. Structural Optimization of Power Transformer Tank Covers. 3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal, 20-24 July 2009.

Thank you