

VEHICLE PROFILE OPTIMIZATION TO MINIMIZE THREAT TO PEDESTRIANS

<u>Supervisors</u>: Prof. Anoop Chawla IIT Delhi

Prof. Sudipto Mukherjee IIT Delhi Prof. Dietmar Goehlich TU Berlin

24/09/2013

Presented by : Hariharan S Subramanian, IIT Delhi

Safety of Vulnerable Road Users -Pedestrians

- Vulnerable Road users
 - Bicyclists
 - Motorized two wheelers
 - Pedestrians (least protection)
- "In the majority of crashes, the pedestrian's side is impacted by the front of the car." Yao et. al. 2008
- "For 93% of the collisions of VRU with cars the shapes of the vehicle front were similar to a standard form" – Otte D et. al., 2012

Collision speed of above 40 kmph resulted in more AIS 3+ injuries for kinematic combinations indicated

Fredrikkson R et. al., 2010

22

Flow chart for Study - OptiSlang

How to model vehicle?

Steps to create a parameterized MADYMO model

Range of values for Variables based on the design space

Parameter	Description	Min	Max
1	BL Ellipsoid CG location in Z direction	0.594	0.170
2	BL Ellipsoid width along Z direction	0.166	0.000
3	BA Ellipsoid CG location in X direction	-0.138	-0.010
4	BA Ellipsoid CG location in Z direction	0.895	0.411
5	BA Ellipsoid width along Z direction	0.320	0.038
6	C Ellipsoid CG location in X direction	-1.343	-0.471
7	C Ellipsoid CG location in Z direction	1.280	0.840
8	C Ellipsoid angle about Y axis	0.873	0.052
9	W Ellipsoid angle about Y axis	0.785	0.436
10	Location of point along Z direction on W ellipsoid along center plane indicated by red dot in Figure 4	1.976	1.370
11	BA Ellipsoid to BE1 Ellipsoid CG location distance in X direction	0.165	0.013
12	BA Ellipsoid to BE1 Ellipsoid CG location distance in Z direction	0.435	0.073
13	BE1 Ellipsoid to BE2 Ellipsoid CG location distance in X direction	0.219	0.000
14	BE1 Ellipsoid to BE2 Ellipsoid CG location distance in Z direction	0.222	0.03

1.75 m

Simulation conditions

7

/ 22

- Force deflection data from Martinez 2007
 - Orange level of F-D characteristics considered
 - The data collected from actual European vehicle fleet (subjected to Euro-NCAP tests)
- Geometrical limits
 - Sedan + SUV
 - Representative of Indian vehicle population
- Pedestrian Models
 - 3 y.o. and 6 y.o. child
 - 5th %le Female
 - 50th and 95th %le Male п.
- Braking values from Matsui 2011
 - Hard braking 4.7 m/s².
 - Time complete stop after initial hit = 100 ms

From TNO, Madymo human models, 2012

40 kmph with braking

CAR 0.2 m Top view

A single measure for threat – Injury Cost (IC)

8

22

- The AIS levels of injury severity mapped to an indicative "injury cost (IC)" using ISO: 13232
- "No way do such injury costs consider, <u>nor</u> <u>are they intended to consider, the market</u> <u>level costs</u> of a proposed protective device".
- The "costs" are a convenient, common basis for combining and comparing across body regions and crash tests and on a relative basis, different types, locations, and severities of injuries.
- The optimization problem being reduced to a single objective problem seems to converge to an optimal solution for the profile of a vehicle front-end design.

Body region	AIS injury	Cost S
Douy region	seventy	
Head	1	784
Head	2	3 807
Head	3	14 169
Head	4	72 349
Head	5	263 306
Neck	3	20 509
Neck	4	440 037
Neck	5	530 695

ISO 13232:part 5

How to compute IC from Simulation ?

Calculation of IC

*Table taken from Payne and patel,2001

*Costs calculated based on ISO 13232:part 5

IC calculation for pedestrian population

11

Total potential IC for a population = $x_1 * IC 6C + x_2 * IC 5F + x_3 * IC 50M + x_4 * IC95M$

Equi-weight IC (EIC) = 0.25 * IC 6C + 0.25 * IC 5F + 0.25* IC 50M + 0.25* IC95MPopulation weighted IC (WIC)⁺ = 0.45*IC of 6C + 0.47*IC of 50M + 0.08*IC of 5F

⁺ - Michigan, USA crash data and US Census data

Flow chart for Study - OptiSlang

¹³ Results from OptiSlang

Design of Experiments followed by Optimization

Design of Experiments – Problem formulation

/ 22

Sensitivity model

Input Variables

Continuous variables, range to avoid zero values : cover selected Indian vehicles dimensions

Coefficient of Importance - Linear

15

/ 22

Parameter 01

Parameter 04

Higher the Col (Linear) indicates better linear correlation with specified output parameter

Significance Filter

Parameters 01, 04, 12, 05,06 indicate to have Col with output.

Optimization results - Minimal Value

17

/ 22

- GA process
- Minimization of WIC
- 100 samples per generation
- Stagnation in 2 generation

- Design 29 was found to be least WIC value.
- Design 29 not acceptable
 - Driver visibility
 - Non-conventional look

Optimal Designs

/ 22

Parameter 14 0.10698	
Parameter 13 0.11831	-
Parameter 12 0.17878	-
Parameter 11 0.10705	-
Parameter_10 1.7744	-
Parameter, 09 0.53936	
Parameter_08 0.66372	-
Paramicha: 07 0.37686	-
Parameter_06 1,239	-
Parameter_05 0.19355	-
Parameter_04 0.62849	-
Parameter_03 0.11875	
Parameter: 02 0,12133	
Parameter 01 0.25188	-

Figure :

- Variable values of one of the designs
- Gray represents the total range
- 14 more designs had WIC values 111534 USD.
- The shape corresponds to similar values
 - Bumper to ground 0.25 m
 - Bumper width -0.38 m
 - Bonnet leading edge height from ground - 0.85 m
 - □ Bonnet length 1.12m

Conclusion

/ 22

- The methodology allows a step by step identification and formulation of vehicle profile optimization problem
- The results indicate
 - Multiple solutions of non-significant variables as identified in DoE
 - Almost similar solutions from significant variables indicating <u>one solution</u> in the range considered.

Bigger Picture

- With better human models like Human Body FE model, and validated FE car models a better injury prediction can be performed.
- With more crash and population anthropometry data, a suitable WIC tuned for Indian conditions* can also be developed.
- A robust solution with OptiSlang
- An appropriate research methodology

References

21

/ 22

- Fredriksson, R., Rosén, E., & Kullgren, A. (2010). Priorities of pedestrian protection--a real-life study of severe injuries and car sources. Accident; analysis and prevention, 42(6), 1672–81. doi:10.1016/j.aap.2010.04.006
- ISO. (2002). ISO: 13232 Motorcycles Test and analysis procedures for research evaluation of rider crash protective devices fitted to motorcycles.
- Kerrigan, J. R., Subit, D., Untaroiu, C., Crandall, J., & Rudd, R. (2008). Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle. SAE-2008-01-1245.
- Martinez, L., Guerra, L. J., & Garcia, A. (2007). Stiffness corridors of the european fleet for pedestrian simulations. In ESV -Paper no. 07-0267.
- Matsui, Y., Han, Y., & Mizuno, K. (2011). Performance of Collision Damage Mitigation Braking Systems and their Effects on Human Injury in the Event of Car-to-Pedestrian Accidents. Stapp car crash journal 2011-17, 55(November), 461–478.
- Otte, D., Jänsch, M., & Haasper, C. (2012). Injury protection and accident causation parameters for vulnerable road users based on German In-Depth Accident Study GIDAS. Accident; analysis and prevention, 44(1), 149–53. doi:10.1016/j.aap.2010.12.006
- Payne, D. A. R., & Patel, S. (2001). OPERAS Project 427519. Retrieved from http://www.eurailsafe.net/subsites/operas
- TNO, & TassB.V. (2012). Human Body Models Manual R7.4.
- Yao, J., Yang, J., & Otte, D. (2008). Investigation of head injuries by reconstructions of real-world vehicleversus-adult-pedestrian accidents. Safety Science, 46(7), 1103–1114. doi:10.1016/j.ssci.2007.06.021

²² Thank you

<u>Acknowledgement</u> :

- DAAD Sandwich model doctoral research fellowship
- Transport Research and Injury Prevention Programme (TRIPP), IIT Delhi

<u>Contact</u> : Hariharan Sankara Subramanian hariharan.s@mech.iitd.ac.in