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Challenges in Virtual Prototyping

e Virtual prototyping is necessary for cost efficiency
e Test cycles are reduced and placed late in the product development

e CAE-based optimization and CAE-based robustness evaluation becomes
more and more important in virtual prototyping

— Optimization is introduced into virtual prototyping

— Robustness evaluation (reliability analysis) is the key methodology
for safe, reliable and robust products

— The combination of optimizations and robustness evaluation will lead
to robust design optimization strategies
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Premium Consultancy and Software Company for
CAE-based Robustness Evaluation, Reliability
Analysis and Robust Design Optimization using
Stochastic Analysis

Dynardo is the consulting company which successfully introduced
stochastic analysis into complex CAE-based virtual product development
processes.

Recently, it is applied in the power generation industry, automotive
industry, oil and gas or high-level consumer goods industry

DYNARDO Field of Excellence
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Excellence of optiSLang

e optiSLang is an algorithmic toolbox for F_rl " 1

Paramehers—Em;pel_xx
e sensitivity analysis,

e optimization, ﬁ I d )
25 iR

e robustness evaluation,

+ ¥ 3 »
EE
e reliability analysis | i
e robust design optimization (RDO) 3K
e functionality of stochastic analysis to 'f‘a

run real world industrial applications

e easy and safe to use

e Powerful automation and integration
environment

e predefined workflows
e algorithmic wizards
e robust default settings

optiSLang Field of Excellence .
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Customers expectation

 Understand your design using Sensitivity Analysis

« Easy and safe to use workflow for engineers and designers to
get a maximum understanding for the relations of
parameterized properties with a minimum number of FE-
calculations

« Improve your Design using Optimization Analy

« Easy and safe to use workflow transfer learning's and
suggest optimization strategy

 Proof Robustness of your Designs using Stochastic

Analysis
« Easy and safe to use workflow for 2-,3- or even a 6-sigma
design
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optiSLang v4 0}
“"Robust Design Optimization - easy and flexible to use” -

« automated generation of an interactive process chain using the
CAE-based modules of sensitivity analysis, optimization and
robustness evaluation

* minimum of user input required

« automated best practice management for algorithmic defaults

« flexible process integration and post-processing defaults
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Robust Design Optimization

Robust Design Optimization (RDO) optimize the design performance
with consideration of scatter of design (optimization) variables as
well as other tolerances or uncertainties.

As a consequence of uncertainties the location of the optima as well as
the contour lines of constraints scatters.

Design Variable 2

Contour lines of objective function
Infeasible
Design Variable |

To proof Robust Designs safety distances are quantified with variance
or probability measurements using stochastic analysis.
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When and How to apply stochastic analysis?

e When material, geometry, process or environmental scatter is
significantly affecting the performance of important response values

e When significant scatter of performance is seen in reality

and there is doubt that safety distances may be to small or safety
distances should be minimized for economical reasons.

o Iterative RDO strategies using optimization steps with safety
margins in the design space and checks of robustness in the space of
scattering variables

or

o Automatic (Loop in Loop) RDO strategies estimating variance
based or probability based measurements of variation for every
candidate in the optimization space

are possible RDO strategies.
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Which Robusthess measure we should use?

Variance based RDO

e Safety margins of all critical responses
are larger than a specified sigma level
(e.g. Design for Six Sigma)

Ylimit — Ymean S Q- Oy

Random response
Safety

margin
N | Limit

Reliability based RDO

e Failure probability with respect to given - >
limit states is smaller as required value

tearied
prp < pp

Taguchi based RDO
e Taguchi loss functions
e Modified objective function Robust Optimum

k _
f (y) — N Z yzz = k(y2 + O';) _Deterrpinistic |Op'cimulm 1
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Failure probability for Six Sigma design
[

\
fx(z)
—20|+20g i i .
The statement six sigma results in 3.4
defects out of a million introduces a “safety
g(x)<o  distance” of 1.5 sigma shift for long term
RD ZD effects!
e 1 Therefore the target of virtual prototyping
- is a 6-1.5=4.5 Sigma design proof.
—b6o X +60
Sigma Variation Probability of | Defects per Defects per million
level failure million (short | (long term - +1.5¢0
term) shift)
+lo 68.26 3.1E-1 317,400 697,700
20 95.46 4.5 E-2 45,400 308,733
+30 99.73 2.7 E-3 2,700 66,803
+4o 99.9937 6.3 E-5 63 6,200
+50 99.999943 5.7 E-7 0.57 233
+60 99.9999998 | 2.0 E-9 0.002 3.4




DYNARDO e © Dynardo GmbH 2014 duncr\do

Robust Design Optimization
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Sensitivity Analysis and Optimization
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Optimization

Sensitivity Study

Singlel & Multi objective
(Pareto) optimization

Robust Design Optimization Methodology
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Sensitivity Analysis
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Flowchart and Methods of Sensitivity Analysis

INPUT: depth ]
10 %
; INPUT: height
34 %
|
INPUT: thickness
i 34%
‘i =
j INPUT: radius
I 38 %
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Design of Regression Sensitivity
Expel_-u_m_ants Methods Evaluation
* Deterministic . 1D regression . Correlations
kadvanced LHS / « nD polynomials « Reduced regression
» Sophisticated » Variance-based

meta models / \ /

1. Design of Experiments generates a specific number
of designs, which are all evaluated by the solver

2. Regression methods approximate the solver
responses to understand its behavior

3. The variable influence is quantified using the
approximation functions
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Identifying important parameters

From tornado chart of linear correlations to the Coefficient of

-
Prognosis (CoP) — e —
9 Coefficient of Prognosis = 97 %
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Linear correlation coefficient
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E 4 %
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a
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Parameter vs. QUTPUT: disp17[1] E
=
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20 40 60 80
CoP [%] of OUTPUT: femur_left_04

Will, J.; Most, T.: Metamodel of optimized Prognosis (MoP) - an automatic approach for user

friendly design optimization; Proceedings ANSYS Conference 2009, Leipzig, Germany,
www.dynardo.de
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Sta t I St I Ca I m ea S u re m e n ts Linear correlation coefficient
=] ! ! ! T nu I . 1
Correlation Measurements i s, il 5
e Coefficients of pairwise linear/quadratic 5 ) i
correlation is the simplest correlation S0
measurement 5.l
e Multi-dimensional non-linear correlation can be _
detected using advanced meta models (Neural ool
networks, Moving least squares,..) 07505 025" o 025 05 075 1
i n ol moder: adjosted R i“““é'{aéif’
. 25 e T T T 1
> o INPUT: sprayAngle
2 e
1 p
o(.)s g %M INPUT: massFlow
-0.5 (,:/'/ =i | Em 21 %
X el _ ani
5"2*?4’;"2%?9};;;':;‘1'573; i - B~
Goodness of fit Measurements (CoD) ) e
- - - - - 8%
e Goodness of Fit (Coefficient of Determination g , , | | ]
0 20 40 60 80 100

CoD) summarize correlations on the meta
models
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Dynardo's Coefficient of Prognosis (CoP)

e CoD is only based on how good the
regression model fits through the
sample points, but not on how good
the prediction quality is

e Approximation quality is too
optimistic for small number of
samples

Explained variation

e For interpolation models (MLS,
Neural Networks, Radial basis
functions,..) with perfect fit, CoD is
equal to one

e CoP measures the forecast quality
of regression model using an
independend test data set

1.00
0.90
0.80
0.70
0.60
0.50
0.40

dynardo

COD

COD,4
COP MLS
CI)OP MLIS 3Var

quad
quad

5Var

25 50

100

200

Number of samples

500

Prediction quality is better if
unimportant variables are
removed from the
approximation model

To minimize necessary number of sample optiSLang includes filter
technology to select significant variables (significance, importance &

correlation filter)
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Meta model of optimal Prognosis (MOP)

. OptiSLang provides a automatic flow to reduce variables and generate the
best possible response surface for every response with a given number of

solver calls [Meta model of optimal Prognosis (MOP)] and checks Prognosis
quality of the meta model.

e MoP solve following important tasks

e We reduce the variable space using filter technology= best subspace

e We check multiple non linear correlations by checking multiple
MLS/Polynomial regression = best Meta Model

e We check the forecast (prognosis) quality using a test sample set
= Coefficient of Prognosis (CoP)

MLS approximation of femur_left_04
Coefficient of Prognosis = 9

e CoP/MOP allows to minimize the number of solver runs . ‘

e Final MOP can be used as approximation of the CAE procés}_s
!
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Easy and safe to use!

What do we mean with that?
. ‘“classic” DOE+RSM technology ask user to reduce number of
variables, choose a suitable DOE with a suitable regression function
and check the quality of the resulting response surface (RS) and the

“optima” on the RS.

. optiSLang provides a automatic flow to reduce variables and generate
the best possible response surface for every response with a given
number of solver calls [Meta model of optimal Prognosis (MoP)] and
checks MoP Prognosis quality and “optima” in real space.

MLS approximation of femur_left_04
MLS approximation of Assponse Coefficient of Prognosis = 99 % :
CoefFiclent of Progoss = 97 % -5952
-10000
-15000
-20000
-25000

-30000
-35000

[ R P

femur_left_04 [1e4]
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Application: Noise Vibration Harshness

Comfort point Red Reference design
Black 483 Robustness runs

~ Nonlinearity

04 05 06 07 08 09 10 14
Frequency [Hz]

e Input parameters are 46 sheet thicknesses of a car body
e Variation of inputs within a +/- 20% interval

e Output values are sound pressure levels at certain frequencies

e One single solver run is already very time consuming
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Application: Noise Vibration Harshness

180

160

140

120

100

80

F 60

- 200

180

160

140

120

100

Samples 100 200 400 600 800
Full model CoP 90.9% 91.7% 95.7% 96.3% 96.9%
D_THI5 - - 2.4% 2.3% 2.7%
D_THI6 6.0% 5.3% 8.2% 8.3% 8.7%
D_THI20 41.3% 42.7% 42.3% 43.4% 42.2%
D_THI23 49.1% 48.0% 50.7% 51.0% 53.8%
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Optimization Algorithms

Gradient-based Response surface method Adaptive RSM
[
:
E 22.5 b S ,_.:.____Zjl,__':q.::::',.'.
1]..5 I*____+|____-.
D(.}E l- T
-ﬂ.ﬁ_.l_u_?,. = . ._-1-_5'_2 i design space
:hgh.isﬂ D25, —~05 I-:I'“"sl1 ‘ J.",-=
= Ay Ufpgg 151 gt
Biological Algorithms: T Pareto Optimization
- Genetic algorithms, O\ 0 0
- Evolutionary strategies AV, b1
- Particle Swarm Optimization .4/ a2/
. a\/ 0 0
N —— by By 0\ 0 0
o o f% v
" . 15 0
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Optimizer Selection Wizzard

e An optimizer is automatically suggested depending on the parameter
properties, the defined criteria as well as user specified settings

Additional information
Additional information about the task. Used to recommend an algorithm.

Mumber of parameter: |2

Mumber of objectives: | 1

Parameter type

@ Pure continuous

Has discrete

Discrete type
@ Ordered

Mominal

Analysis status: |Precptimized

Constraints violations: [Nnt set

Failed designs: [Nme

Solver noize: [Ncme

Optimization method
Specify the optimization method

Optimization method
Response surface method

e () Adaptive Response Surface Method (ARSM)
Matural inspired optimization algorithms

O () Evolutionary Algorithm (EA) - local

O () Evolutionary Algorithm (EA) - global

O () Partice Swarm Optimization (PS0) - local
O () Particle Swarm Optimization (PS0) - global
O () Stochastic Design Improvement (SDI)

Gradient based optimization

0 @ Non-Linear Programming by Quadratic Lagrangian (MLPQL)

Additional options

Use Previous Data As Starting Point(s)

[<Back ][Next> ][Canaal

S
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Workflow of Sensitivity Analysis and Optimization

1) Start with a sensitivity study 2) Identify the important parameters
and responses using meta model

technique
- understand the problem
reduce the problem

Understand the
Problem using
CoP/MoP

Search for Optima 3) Run gradient based or biological

o .. based optimization algorithms at

I e optimal meta model (MOP)

4) Run an RSM based, gradient based or biological based optimization
algorithms using additional CAE solver runs
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Iterative process optimizing NVH Comfort

Reduction of Noise and Vibration for roadway excitation

welTic irmezar
full model = a6 %
. i T 100
-l INPUT: PSHELL 26@1 Thickness 80
60
| INPUT: FSHELL_sz_Thicknas 40

2
T

: PSHELL 1115 Thickness
10 %

INPUT paramezer

Second sensitivity study usi
variables shows CoP's > 40..6
flainability = optimization potential.

0%)

Parameter History

[T Uilper DUU;I(J
. 9 Lower bound
|8 lteration history (PSOLID_Kleber_Scheiben)

I =

] ;] 1
Iteration Number

Frequency [Hz]

Using ARSM optimizer in subspace of most important <10
optimization variables shows reduction of noise levels.

DAIMLER
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Robustness Evaluation and
Reliability Analysis

AR
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" *Robust Design Optimizas
Varilnce based L
Robustnéss Evaluation Sensitivity <
Probability based Single & Multi ¢
Robustness Evaluation, (Pareto) optin
(Reliabillity analysis)

Robust Design Optimization Methodology
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Study
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Successful industrial applications need the balance
between

1. Reliable Input Definition 5% -
= Distribution function é | Lognotmal / T\
= Correlations [ I\ Nomal
= Random fields 2 |
% | ] =X +oy
R _IID_ 20 30

2. Reliable stochastic analysis
= variance-based robustness evaluation
optimized LHS

= suitable portfolio of Reliability Anal

ue of Random Variable

3. Reliable Post Processing
B = Coefficient of Prognosis
iﬁ = Reliable variation and cor
measurements
= easy and safe to use

INBUT: SCALE_KF_FORCE_L
INPUT: BEFEELE&;.ING_FRIC
INPUT: FEMgB.ELENGTH
INPUT: H_POINT_X
B %
INPUT: SEAT Z
23 %

0 an 60 80 100
R2 [%] of OUTPUT: FEMUR_L




DYNARDO ¢ © Dynardo GmbH 2014 dungr\do

Uncertainties and Tolerances

e Design variables Property SD/ol;:ean
e Material, geometry, loads,
constrains, ... Metallic materiales, yield 15

e Manufacturing Carbon fiber rupture 17

e Operating processes (misuse) Metallic shells, buckling 14

e Resulting from Deterioration strength

. Bond insert, axial load 12
Honeycomb, tension 16
Honeycomb, shear, compression 10
Honeycomb, face wrinkling 8
Launch vehicle , thrust 5
Transient loads 50
Thermal loads 7.5
Deployment shock 10
Acoustic loads 40
Vibration loads 20

Klein, Schueller et.al. Probabilistic Approach to Structural Factors of Safety in Aerospace.

Proc. CNES Spacecraft Structures and Mechanical Testing Conf., Paris 1994



DYNARDO e © Dynardo GmbH 2014 (‘Junor\do

Definition of Uncertainties

Distribution functions define Correlation is an important characteristic
variable scatter of stochastic variables.
c 08 ITPUT: Zugfestigheit ve, OUTPUT: Streckorenze, @
kel — . T
g 06 Lognomal/\ ﬁ% N
| 2 . = -
2 20 Correlation of
5 04 | \opma 23 e # 0 1 single uncertain
o o B AR values
2 D e e
3 / / ‘ \\ IS MIT 520
-8 X oy S -* :_' . el -
o 0.0 | 2 L
-1.0 0.0 1.0 20 30 BOU  B20 640 B60  8BO 900 920 940

Value of Random Variable

Tensile strength

Spatially correlated
field values

Translate know how about uncertainties into proper scatter definition
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Robustness Evaluation

Robust Design??

Gecmeltry
Z @ Geometry
>3 7 Parameters
Comprassor Example
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Optimization of see hammer

Dynamic performance optimization under weight and stress constraints using
30 CAD-parameter. With the help of sensitivity study and optimization

(ARSM), the performance of a deep sea hammer for different pile diameters
was optimized.

Initial Design valid for Optimized design valid for
two pile diameter four pile diameter

Design Evaluations: 200 times 4 loadcase
CAE: ANSYS workbench
CAD: ProEngineer
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Robustness check of optimized designs

e With the availability of parametric modeling environments like
ANSYS workbench an robustness check becomes very easy!

e Menck see hammer for oil and gas exploration (up to

e Robustness evaluation against tolerances, material sc
and environmental conditions | T 3 Verst Pt

60 scattering parameter

BVAVA =5
SABE

N KAl
L&

2 0 10
_RPUT: Do Ver st Plebl

Statistic data
Min: -24.69 ' Max: 24.69
Mean: -0.4142 ' Sigma: 13.32
oV: 32.05 '
' Skewness: 0.01993 | Kurtosis: 1,993
| Defined PDF: TruncatedNormal
| Mean: 1018 | Sigma: 254
Lower cut; -25.4 | Upper cut: 25.4

Design Evaluations: 100
Process chain: ProE-ANSYS workbench- optiSLang
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Reliability Analysis

e Robustness verify relatively high probabilities
(£20, like 1% of failure)

e Reliability analysis verify rare event probabilities
(=30, smaller then 1 out of 1000)

There is no one magic algorithm to estimate
probabilities with “"minimal” sample size. Accuracy

It is recommended to use two different [\
algorithms to verify rare event probabilities
|
e First order reliability method (FORM), >2c, gradient based
e Importance sampling using design point (ISPUD), > 26, n £ 10
e Adaptive importance sampling, >2c, n < 10
e Directional sampling, >2c, n <10
e Monte-Carlo-Simulation, independent of n, but very high effort for >2c
e Latin Hypercube sampling, independent of n, still very high effort for >2..3c

e Asymptotic Sampling, >2c, n > 10

e Directional Sampling using global adaptive response surface method, >2c,
n<>5..10

Speed



DYNARDO ¢ © Dynardo GmbH 2014 dunor\do

Reliability Analysis Algorithms

Gradient-based ISPUD Importance Adaptive Response
algorithms = First Sampling using Design Surface Method
Order Reliability Point

algorithm (FORM)

T9 "
hY(X) -
pdf ;;.2
”l; :
g(ll)=0 e 2 i 2 ’
I ,L 8 B
Monte Carlo Sampling Latin Hypercube Sampling Directional Sampling
X2 A ®
o e Py P(F|a)
o ® |
o @O Cg © @
03% o X1 ™Y a
o CS)O @ = U
% fHo 0
o ) 1
X,
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How choosing the right algorithm?

Robustness Analysis provide the
knowledge to choose the
appropriate algorithm

—OSTICienls or Fragnoss (using r1os-
full modei: CoP = = ‘96 g &
: noGel C : .

INPUT: HubBetraz
3%

INPUT: ShdBetaz
6 %

INPUT: HubBeta3
Probability of Failure P(F) 6 %

107! 1072 1072 107* 107° 1076

S

INPUT: HubThiz2
15 9%

e) ARSM & AS INPUT: HubBetai
28 9

201510 52

30

¢) FORM & ISPUD *

40
\

Number of random parameters n
70 60 50

80

90

0

=

Robustness & Reliability Algorithms
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Application of Reliability Analysis

e Fatigue life analysis of Pinion shaft T Vorspaniingg
e Random variables -
e Surface roughness
e Boundary residual stress
e Prestress of the shaft nut
e Target: calculate the probability of
failure
e Probability of Failure:
e Prestress |: P(f)=2.3 10“ (230

ppm) = ZE) 30 ' 40 i

0.04

0.03
T

PDF
0.02

0.01

e Prestress Il: P(f)=1.3 107 (0.13 NPUT: Vorgpanmicalt

Solver: Permas
Method: ARSM
75 Solver evaluations

(32




DYNARDO ¢ © Dynardo GmbH 2014 duncr\do

Summary

e Highly optimized structures tend to loose robustness

e Variance-based robustness analysis can estimate sigma level

e Reliability analysis is necessary to proof small failure probabilities
e Use specific robustness/reliability measurements

e Stochastic analysis needs a balance between input definitions,
stochastic analysis method and post processing

e Because all RDO strategies will try to minimize solver runs for
robustness measures, a final proof of robustness/reliability is
mandatory

e Carefully translation and introduction of material scatter is crucial
e Start with robustness evaluation, continue with iterative RDO
approach using safety distances

e |terative optimization/variance-based Robustness Evaluation with
final reliability proof is often our method of choice




DYNARDO ¢ © Dynardo GmbH 2014 duncr\do

Robust Designh Optimization (RDO)
in virtual product development

optiSLang enables you to: i |
- Quantify risks =
- Identify optimization potentials / N

Adjust safety margins without limitation f =
of input parameters &) .

Secure resource efficiency

Improve product performance
Save time to market

d 14 ¥ [¥]
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Iterative Robust Design Optimization

e Decoupled optimization and
robustness/reliability analysis

e For each optimization run the safety
factors are adjusted for the critical model
responses

e Applicable to variance- and reliability-
based RDO

» In our implementation variance-based
robustness analysis is used inside the
iteration and a final reliability proof is
performed for the final design
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Iterative Robust Design Optimization

/Optimizatiom K Robustness\

e D -

ensitivity analysis

xILII

i

L8

3

/ U

f Yes

No : :
I_ — Update -—
constraints

e Sensitivity analysis gives reduced optimization variable space X, 4
e Optimizer determines optimal design x,,; by direct solver calls
e Robustness evaluation

— Robust optimum - end of iteration

— Non-robust optimum - update constraints and repeat optimization
+ robustness evaluation

Dynardo e optiSlang Seminar 44

method overview
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Simultaneous Robust Design Optimization

e Fully coupled optimization and robustness/reliability analysis

e For each optimization (nominal) design the robustness/reliability
analysis is performed

Applicable to variance-, reliability- and Taguchi-based RDO

» Our efficient implementation uses small sample variance-based
robustness measures during the optimization and a final
(more accurate) reliability proof

» But still the procedure is often not applicable to complex CAE
applications
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Simultaneous Robust Design Optimization

@ust Design Optimiza@

e D -

ensitivity analysis

xllll

L8

3

)

e Sensitivity analysis gives reduced optimization variable space X, 4

e Optimizer determines optimal design x,,. by direct solver calls with
simultaneous robustness evaluation for every design

e Each robustness evaluation determines robustness values by direct
solver calls

Dynardo e optiSlang Seminar

method overview






