

Flow Simulation of LCD Manufacturing Process

Task:

- Optimization the flow conditions at a LCD manufacturing process
- Inputs:
 - lab geometry
 - 5 windows (velocity)
 - reference scenario with well known flow condition

(velocity measurement points: 2 doors and 10 fields inside the lab)

- Goal:
 - Identification of the parameters to find the reference scenario.
 - Possibility to vary 10 pressure fields inside the lab.
 - Start at a give initial condition (far away from goal).
 - Minimizing the error ranges comparing with the reference values.
- Solve this tasks by using **optiSLang inside ANSYS Workbench**.

Flow Simulation of LCD Manufacturing Process

How linear are the correlations?

- Regression model: MLS (Moving Least Square)

Optimization Results (ARSM)

du

Output Variables History										
			Velocit	y [m/s]	[m/s]		Error [%]			
	Target Value	Initial(1)	inter3(59)	iter4(76)	iter7(152)	Initial(1)	inter3(59)	iter4(76)	iter7(152)	
v1	2.219	0.329	1.986	2.329	2.262	574.468	11.732	-4.723	-1.901	
v2	2.323	0.327	2.269	1.997	2.374	610.398	2.380	16.324	-2.148	
v3	2.719	1.394	2.973	2.345	2.753	95.050	-8.544	15.949	-1.235	
v4	2.675	1.362	2.924	2.487	2.674	96.402	-8.516	7.559	0.037	
v5	0.953	1.679	0.541	0.711	0.896	-43.240	76.155	34.037	6.362	
v6	1.074	1.745	1.043	1.200	1.073	-38.453	2.972	-10.500	0.093	
v7	0.846	0.341	0.358	0.708	0.786	148.094	136.313	19.492	7.634	
v8	0.609	0.347	0.498	0.469	0.569	75.504	22.289	29.851	7.030	
v9	0.597	0.164	0.725	0.925	0.512	264.024	-17.655	-35.459	16.602	
v10	0.682	0.11	0.853	0.630	0.707	520.000	-20.047	8.254	-3.536	
out1	2.798	2.689	3.052	3.090	2.846	4.054	-8.322	-9.450	-1.687	
out2	2.409	2.765	2.692	2.280	2.377	-12.875	-10.513	5.658	1.346	

Very Good

Reasonable

Good Optimum Results Total iteration number: 152

9

Flow Simulation of LCD Manufacturing Process

Problem Description

- Identify model inflow parameter to match outflow
- Identified output velocities have to be in 10% error ranges comparing with reference values
- Input parameter: 10 pressure areas
- 100 design points

Licensing Solution

- 1 Ansys Fluent
- 2 Ansys HPC Parametric Packs

Result/Benefit

• ~6,2x speedup

Multi-Physics Design Optimization of an Axial Compressor

Application and Best-Practice Guide-Lines

Fluid Dynamics

Structural Mechanics

Electromagnetics

Systems and Multiphysics

Johannes Einzinger, ANSYS

© 2011 ANSYS. Inc. 2014

13

September 30,

ANSYS[®] **Forecast quality of maximal stress**

R

15

© 2011 ANSYS. Inc.

 CoP=86% MLS approximation of Equivalent_Stress_Blade_Maximum Coefficient of Prognosis = 86 % 2.98e+008 2.90e+008 2.85e+008 2.80e+008 -Statistic is reliable 2.75e+008 2.70e+008 2.65e+008 2.60e+008 2.55e+008 .50e+008 Detect important Variables 45e + 00840e+0082.35e+008 7.30e+00825e+008 .20e+008 -Parameter Reduction .15e+008 .10e+008 0.5e + 0.08.00e+008 .95e+008 .90e+008 1.85e+008 MoP is plausible [le8] 1.80e+008 1.75e+008 1.70e+008

Blade Angle: Hub, Mid Leading Edge

R1HubBeta1

-46

-52

1.65e+008

-60

-58

-56

RIMidBetal -54

September 30, 2014

ANSYS Forecast quality of constraints

Eigen Mode:

- CoP=91%
 - Statistic is reliable
 - Detect important Variables
 - Parameter Reduction
- MoP is plausible

ANSYS Forecast quality performance

Aero Dynamic:

- CoP=64% and 65%
- Important Variables
 - Parameter Reduction possible
- MoP is plausible

ANSYS Design Optimization, Summary

	Initial Design	Best Design SA	Best Design Solved (MoP)	Best Design ARSM
Efficiency [%]	87.0	88.0	88.9 (91.0)	88.9
p _{tot} Ratio [-]	1.41	1.41	1.41 (1.44)	1.41
Max. Stress [MPa]	219	235	232 (230)	239
#Designs	1	150	1 (0)	100
19 © 2011 ANSYS Inc September	or 30			

2011 ANS13, INC. 5ep 201

2014

Optimization of Turbo maschines

- Turbo Machines show:
 - Rotating and stationary Parts
 - Transient Flow Field
 - Choke, Stall...

. . .

Dynamic Blade Loading

High Requirement for Optimization

RDO Centrifugal Compressor

Parameterization

Parametric geometry definition using ANSYS BladeModeler (17 geometric parameter)

Model completion and meshing using ANSYS Workbench

RDO Centrifugal Compressor

Fluid Structure Interaction (FSI) coupling

Parametric fluid simulation setup using ANSYS CFX

Parametric mechanical setup using ANSYS Workbench

RDO Centrifugal Compressor

Optimization goal: increase efficiency

Constraints: 2 pressure ratio's, 66 frequency constraints, Robustness

RDO Centrifugal Compressor

Robust Design Optimization with respect to 21 design parameters and 20 random geometry parameters, including manufacturing tolerances. Robust Design was reached after 400+250=650 design evaluations consuming.

Global Sensitivity Analysis of GDI Nozzle

• According to the European policy of new car registrations, the CO₂ targets have to be reached step by step on average from 2012 until 2015 as shown in the graph.

• Soot emission and CO₂ emission are **affected by the injection pressure**.

• **Dimension of the nozzle** has effect on the injection pressure. Therefore they are defined as the input parameters.

• From sensitivity analysis **important input parameters** effecting the particular output can be determined.

• Also worked out the **improvement potential and direction**.

• Predicted trends have been **confirmed** by spray and engine experiment results and methodology was **implement** into nozzle design development cycle.

Fig: CoP and Meta Model of Injection Velocity

by courtesy of CONTINENTAL

Optimization of a cylinder head

Construction of a parametric cylinder head in SolidWorks

Fluent Mesh in Ansys Workbench

Variation of valve seat angles and port geometry to maximize inlet flow

Use of Evolutionary algorithm

Inlet flow enhancement of \approx 6 % by valve seat, \approx 14 % through port optimization => Total flow improvement of \approx 20 %

Optimization of Process Parameters for Paint Application

- Quality of paint is important Corrosive resistance and quality impression (marketing).
- BMW has developed State of Art procedure to optimization the paint parameters using ANSYS Fluent and optiSLang thus reducing the development time for new car by 50%.
- This approach predicts the paint thickness with high accuracy compared to measurements.
- Following parametric is considered based on the paint process
 - Painting distance and Paint mass flow
 - Rotational velocity of the paint bell
 - Strength of the electrical field
 - ➤ Mass flow rate of the guiding air

Fig: Paint Process During Manufacturing Phase

Fig: Comparison of Test and Simulation

Fig: Paint Thickness Distribution as Contour