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Abstract

This study attempts to examine the effectiveness of meta-modelling in finite element (FE) model updating
problem. Natural frequencies evaluated from eigen analysis of the FE model are approximated individually
by meta-models. The updating objective function is defined for residual error between the natural frequencies
identified by operational modal analysis and from FE model. A comparative numerical study is performed
for updating a reinforced concrete (RC) road bridge FE model. In meta-modelling framework, linear and
quadratic polynomial based adaptive response surface method (ARSM) using least square (LS) and moving
least square (MLS) regression techniques are presented. Different design of experiment (DOE) schemes
(viz. Koshal, D–Optimal, Full Factorial and Central Composite Designs) for generating support points and
weight functions (viz. exponential and regularized) are also considered. Results show the effectiveness of
MLS based ARSM that bypasses multiple FE model runs as compared to the conventional gradient based
optimization.

Keywords: Response Surface Method, Moving Least Square Technique, Regression Analysis, Finite
Element Model Updating, Gradient Based Optimization, Design of Experiment

1. Introduction

Structural parameters in real construction de-
viate from their characteristic values used in FE
model analysis. This is attributed to lack of mim-
icking the real life conditions such as deformations,
joints, boundary conditions, exact material prop-
erties among many others. Also, modelling defor-
mations, joints etc. are difficult and cumbersome.
Hence, it is computationally appropriate to adjust
the properties of FE model to duplicate the re-
sponse from the actual structure. In this view, up-
dating FE model is an avid domain in damage de-
tection and structural health monitoring [1]. Where
both, direct and iterative methods are used for FE
model updating [1]. In iterative FE model updating
procedure, the physical parameters are updated by
minimizing the error between modelled and actual
results. This requires to evaluate multiple gradi-
ents which are computationally expensive and may

cause error or convergence difficulty [2].

In view to overcome the above mentioned
shortcomings, meta-modelling by response surface
method (RSM) has emerged as an efficient alter-
native tool for FE model updating [2]. It by-
passes the computational effort caused by multi-
ple runs of FE model. Also, it helps in evaluation
of the gradient for the model which may be diffi-
cult from FE analysis. Ren and Chen [3] applied
the RSM for FE model updating of simply sup-
ported beam and box-culvert bridge. They opti-
mized weighted residual error between the identi-
fied and modelled natural frequencies. It was noted
that RSM based FE model updating converged ef-
ficiently and faster than the sensitivity based up-
dating methods. Brehm et al. [4] presented appli-
cation of RSM for updating cantilever truss and
railway bridge. They also used weights in objective
function which is defined for energy based mode
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Figure 1: View of the RC road bridge (a), the cross-section (b) and the FE Model (c)

assurance criteria. Their RSM used genetic al-
gorithm and gradient based optimization for up-
dating. For linear as well as non-linear problems,
Shahidi and Pakzad [5] proposed a unique updat-
ing scheme using RSM for each time step. In their
time domain FE model updating scheme, a gener-
alized formation of RSM was defined where order

and fitting is collectively judged from the individ-
ual response surfaces at each time steps. In the
view of application of RSM to FE Model updat-
ing, Chakraborty and Sen [6] examined the effec-
tiveness of MLS based response surface over LS. In
their study, conventional exponential weight func-
tion was used for MLS based RSM to update hypo-
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thetical examples of 10 bar truss and culvert. They
used synthetic data where error was ranging from
10 to 30%.

By far in FE model updating, applications of
RSM are subjected to LS regression technique and
only recently, studies are using MLS. Thus, a bet-
ter understanding on MLS based RSM in FE model
updating is needed. In this concern, current study
examines the different aspects of RSM in updating
problems. A numerical study is conducted for iter-
ative FE model updating based on RSM of a real
life RC road bridge.

2. Description of RC Road Bridge and FE

Model

The structure examined in this study is an exist-
ing RC bridge near Indian Institute of Technology
Guwahati in North Guwahati. Total length of the
RC road bridge is 88.0m with 3 independent spans
which are simply supported. The middle span is
39.0m long and the end spans stretch to 24.5m. It
allows 2 way traffic flow with 7.5m in each lane.
The full view of the bridge is shown in Fig. 1(a).
The bridge deck of the main span is resting over
4 prestressed longitudinal beams and 8 diaphragms
which act as cross beams. The main span is con-
sidered in the study for further investigation. For
the initial analysis, a three dimensional (3D) FE
modelling is done in ANSYSr. To construct the
FE model, SHELL181 and BEAM188 elements [7]
are used in the deck and the longitudinal girders,
respectively. The material properties are incorpo-
rated as per Indian Standard [8]. The correspond-
ing FE model is shown in Fig. 1(b).

3. Parameter Identification and Updating

The middle span of RC road bridge is exam-
ined with sensors under traffic flow and the time
history responses are recorded for further inves-
tigations using signal processing. To solve the
identification problem, Hilbert-Huang transforma-
tion (HHT) technique [9] is used here. In this
approach signal is first decomposed into intrinsic
modal function (IMF) by empirical mode decom-
position method. After the IMFs are evaluated,
Hilbert transform is applied to obtain the instan-
taneous frequencies and phases. On time averaging
of these instantaneous frequencies, one can obtain
the natural frequencies of the examined structure
(see Mahato et al. [10]).

Once the investigation of modal parameters (i.e.
natural frequencies) from the recorded data is car-
ried out, as specified above, FE model updating
problem is solved. Generally, updating is executed
for the parameters like material properties, dimen-
sions etc. which plays a vital role in structural be-
haviour. With the selection of parameters x, up-
dating problem is solved for optimization of residual
error ε with respect to x as

minx ε =
√

∑nf

i=1(f̂i(x)− fi)2

where, x ∈ [xl,xu]
(1)

In the above equation, f̂i and fi are ith natural
frequency identified from operational data of ac-
tual structure and FE model, respectively. A total
of first nf natural frequencies are considered for
updating in this study where the parameters are
bounded in lower and upper limits (i.e. xl and xu,
respectively). Furthermore, in the current study
RSM based meta-modelling scheme is used for ap-
proximating the objective function (i.e. ε) for opti-
mization. The methodology of RSM employed here
is presented in the following section.

4. Response Surface Meta-modelling

RSM is an approximating polynomial set gen-
erally limited to linear or quadratic order based on
the accuracy of fit. The polynomial set is estimated
by generating a specific pattern of support points
following a particular DOE scheme. Original func-
tion evaluations at the support points are regressed
to obtain coefficients of the polynomial set. In FE
model updating purview, RSM is used as approx-
imating surface to the output function of the FE
model. Subsequently, optimization algorithm is ex-
ecuted on the response surface to evaluate the min-
imum point based on the objective function. RSM
can be expressed as

f = Xa+ ef (2)

where, f, X, a and ef are the original function vec-
tor, matrix of the RSM polynomial set, correspond-
ing coefficient vector and error vector due to lack of
fit. The above generalized expression of RSM can
be mathematically represented for linear basis as

f = α0 +

nv
∑

i=1

αixi + ef (3)
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(a) (b)

Figure 2: Examples of support points generated by DOE schemes: Koshal Design (Kos), Full Factorial
Design (F-Fat), D–Optimal design (D-Opt) and Central Composite Design (CCD) for (a) linear and (b)
quadratic approximations

Figure 3: Reduction in bounds of the updating parameter (i.e. Ec and ρc) with succeeding iterations of
ARSM

and for quadratic basis it is modelled as

f = α0 +

nv
∑

i=1

αixi +

nv
∑

i=1

βix
2
i +

nv
∑

i=1

nv
∑

j>i

βijxixj + ef

(4)
where, nv is number of variables. After the selec-
tion of approximation (i.e. linear or quadratic), the
unknown coefficients in a are estimated by LS curve
fitting or its modified version of MLS which are dis-
cussed below.

4.1. Least Square Technique

This technique is commonly used for regression
analysis where it optimizes the square of error be-
tween the original function and approximate re-
sponse. Using Eq. 2, the square of error can be

given as

e(a) = eTf ef = (f−Xa)T (f−Xa) (5)

For minimizing the Eq. 5 with respect to the un-
known coefficients a, one can get LS solution of the
coefficients for RSM as

a = (XTX)(−1) (XT f) (6)

The solution in the above equation is valid for
(XTX) being non-singular. In contemporary to LS
technique, another regression based technique sim-
ilar to LS is defined for local approximation of the
response surface which is explained in the following
section.
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Figure 4: Flowchart of updating scheme followed in this study

4.2. Moving Least Square Technique

A major demerit of LS technique lies in its
global fitting of the response surface which results
in higher error. Once the coefficients are evaluated,
it remains constant for every point in the design
domain. This is not in the case of MLS based RSM
where the coefficients are function of distance be-
tween the points. In MLS technique, the error is
also dependent on the distance d of the points by
weight functions. Thus, the square of error is mod-
ified as

e =

np
∑

j=1

wje
2
f,j (7)

here, wj and ef,j are weight function and error in
response surface fit for jth point, respectively. This

modifies the Eq. 5 due to the inclusion of weight
matrix Θ as

e(a, d) = eTf Θ(d) ef = (f−Xa)TΘ(d) (f−Xa) (8)

In the above equation, Θ is given by

Θ(d) =



















w1(d) 0 · · · · · · 0

0
. . .

...
... wj(d)

...
...

. . . 0
0 · · · · · · 0 wnp

(d)


















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where, the individual weight functions can be de-
fined using exponential function as

wj(d) =

{

exp−(
d

Dγ )
2

, if d ≤ D

0, if d > D
(9)

The weight function is subjected to a radial distance
D which defines its domain of influence over the
support points np. Additionally, a reducing factor
γ = 0.3808 is used for decaying the shape function.
From Eq. 9, it is evident that smaller value of D
results in better fit of response surface because of
well proportioned shape function. This may result
in less number of support points and eventually, re-
duce error. Also, the weight function is sensitive
to D. For higher D, the shape function can have
more error. Alternatively, another weight function
based on regularized weighted scheme is proposed
by Most and Bucher [11] as

wj(d) =

{

w̄j(d)∑np

i=1
w̄i(d)

, if d ≤ D

0, if d > D
(10)

The individual weight function w̄i(d) is given as

w̄i(d) =
{( d

D
)2 + δ}−2 − (1 + δ)−2

δ−2 − (1 + δ)−2
(11)

where, δ is considered as 10−5. Use of regulated
weight function helps in using largerD as the shape
function error is relatively less. Hence, the above
formulations suggests the overall advantage of MLS
technique especially for non-linear surface as it ap-
plies local approximations using weight functions
as compared to LS based RSM which uses global
approximation.

5. Design of Experiment Schemes

The unknown coefficients are determined by
supports points generated using a definite DOE
scheme. These points are used for evaluating origi-
nal function using FE model. Thus, strategic choos-
ing of DOE is critical in RSM efficiency as number
of FE model runs are dependent but one must not
forget the quality of fit. In this study four differ-
ent DOE schemes are used for evaluating the coef-
ficients of the RSM which are explained below.

5.1. Koshal Design

This scheme uses single parameter at a time for
generating the DOE [12]. The sole benefit lies in

minimal generation of support points for the coef-
ficient evaluation. This, in turn, effects the qual-
ity of response surface fitting. Fig. 2 depicts the
Koshal Design for linear and quadratic polynomial
basis which generates nv+1 and (nv +1)(nv+2)/2
support points, respectively.

5.2. Full Factorial Design

Unlike Koshal Design where minimum support
points are generated, Full Factorial Design gives all
the possible combinations of the support points.
This DOE scheme gives pnv support points. The
level of factorial design p is a non-zero integer with
1 for constant basis, 2 for linear basis and so on.
For p = 2 and 3 (i.e. linear and quadratic basis, re-
spectively) the Full Factorial DOE scheme is shown
in Fig. 2. It can be noted that all the DOE schemes,
discussed here, are subsets of Full Factorial Design.

5.3. D–Optimal Design

In this design scheme, variance of the error is
minimized by choosing a subset of Full Factorial De-
sign. This eventually helps in reducing the support
points without much reduction in the fitting quality
for larger number of parameters. The optimal cri-
teria to improve the fit of response surface is given
by maximizing |XTX|/nnv

p [13], here the number
support points required are defined by the user. In
this study, 1.5 times of support points generated as
per Koshal Design is used. Thus, D–Optimal De-
sign is same as Full Factorial Design for number of
parameters ≤ 2 as shown in Fig. 2. But further
increase in number of parameter have a significant
decrease in number of support points.

5.4. Central Composite Design

Central Composite Design scheme has radial as
well as box corner points along the center point.
A total of 1 + 2nv + 2nv support points are gener-
ated. In this study, faced Central Composite Design
is used where the radial points are situated at the
middle of the adjacent box points as shown in Fig. 2
(b). Alike Full Factorial Design, this design gener-
ates less number of support points (but more than
D–Optimal Design) with adequate fitting accuracy.

It is evident from the Fig 2, number of points
generated by Koshal Design ≤ D–Optimal Design
≤ Central Composite Design ≤ Full Factorial De-
sign. Also, one can notice that for 2 parameters (i.e.
nv = 2) in linear approximation, D–Optimal and
Full Factorial Designs have same points. Moreover,
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Table 1: Natural frequencies and corresponding mode shapes from FE model of RC road bridge

Sl. No.
Identified Nat-
ural Frequencies

(Hz)

Updated Nat-
ural Frequencies

(Hz)
Updated Mode Shapes

Mode 1 3.04 3.06

Mode 2 7.74 7.61

Mode 3 13.81 13.39

Mode 4 19.72 19.86

Mode 5 - 26.68

Mode 6 - 27.99

Mode 7 - 28.73

Mode 8 - 30.72

Mode 9 - 33.48

Mode 10 - 34.07

for quadratic approximation, D–Optimal, Central
Composite and Full Factorial Designs generates
identical points.

6. Numerical Study

Initially, investigation of the recorded data us-
ing operational modal analysis is performed, as per
§ 3, to identify the natural frequencies of the RC
road bridge. Detailed discussion on the identifica-
tion is beyond the scope of this study. However,
one may refer to Mahato et al. [10] for this pur-
pose. Identified first four natural frequencies are
reported in Table 1. FE modelling of the bridge
is done on ANSYSr platform using the parametric
design language (APDL). The objective function for
updating problem constitutes of the residual error ε
of the first four natural frequencies (i.e. nf in Eq. 1

is equal to 4) from the identification and FE model.
The updating parameters selected in this study are
elastic modulus (Ec) and density (ρc) of concrete.
These updating parameters are bounded between
[2.5 × 1010, 5.0 × 1010] and [1.8 × 104, 2.5 × 104],
respectively.

In this study, optimization of the residual
error for updating FE model is done using
optiSLangr [14]. For performing ARSM, 100% ini-
tial range is chosen for spreading support points
over the entire domain. Additionally, steady con-
vergence is ensured by setting the zooming factor
as 80%. This factor helps in reducing the domain
of new support points at each iteration from the
preceding iteration. Reduction in extreme values
of the support points can be expressed for Ec and
ρc in Fig. 3 with succeeding iterations. Here, the
lower and upper bound presents the extreme values
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Table 2: Minimized objective function, number of iterations and FE model runs from direct gradient opti-
mization and different ARSM schemes

Optimization
Method

Basis Regression Weight
Type

DOE Iterations Number
of Runs

Minimized
Objective
Function

Direct
Gradient

- - - - 7 38 (38) 2.1688

ARSM
Linear

LS

- D-Opt 11 67 (60) 2.1316
- Kos 9 46 (30) 2.1319

Quadratic
- CCD 6 67 (56) 2.1317
- Kos 6 49 (38) 2.1315

ARSM
Linear

MLS Exponential

D-Opt 11 67 (62) 2.1317
Kos 9 46 (30) 2.1319

Quadratic
CCD 2 23 (20) 2.1320
Kos 6 49 (38) 2.1315

ARSM
Linear

MLS Regularized

D-Opt 5 31 (29) 2.1318
Kos 9 46 (30) 2.1319

Quadratic
CCD 2 23 (20) 2.1320
Kos 6 49 (38) 2.1312

Note: Here ( . ) gives the actual number of FE model runs for the complete iterations.

of the parameter in the domain of support points
generated for the current iteration and the design
point specifies the optimized point in that iteration.
Moreover, one extra center point along the support
points is generated as per the DOE and inclusion
of the support points from past iterations are used
in regression for better fitting of response surface.
Linear scale transformation of the parameter in [0,
10] is performed to reduce the ill-conditioning of the
matrices in the regression analysis. Thus, the radial
distance D is defined as 14.14. The convergence
criteria of the ARSM for stopping the iterations
loop is defined as 0.01% of variation in the param-
eters and objective function. As discussed, ARSM
using LS and MLS regression techniques with lin-
ear as well as quadratic polynomial basis is exe-
cuted with varying DOEs. A schematic flowchart
of the complete updating procedure is presented in
Fig. 4. DOE schemes D–Optimal and Full Facto-
rial have identical support points, for two parame-
ters (i.e. nv = 2) under linear approximation. For
quadratic approximation D–Optimal, Full Factorial
and Central Composite Designs have identical sup-
port points. Hence, all these identical cases as per
the approximation basis show similar results. A
comparative study is performed for ARSM based
on LS and MLS with exponential and regularized

weight for varying polynomial basis and DOE.

In this study, the response surfaces are fitted
individually for all the four natural frequencies as
shown in Fig. 5 then the objective function (see
Fig. 6) is optimized by gradient method. Fig. 5
shows a close fit of response surface and support
points for natural frequencies f1 to f4 for regular-
ized weighted MLS based ARSM and same was no-
ticed for the other cases. One can notice nearly lin-
ear relation between the natural frequencies and up-
dating parameters with higher sensitivity towards
Ec as compared to ρc. On other hand, Fig. 6
shows nonlinear relation of the residual error ε
with respect to the updating parameters. The out-
come of updating problem solved for different cases
is presented in Table 2. It is observed that the
convergence was achieved for all the ARSM cases
and the difference in minimized objective functions
is insignificant. Results show that LS and MLS
by exponential weight function have similar num-
ber of iterations, FE runs and minimized objective
function value for linear approximation. But for
quadratic approximation, Central Composite De-
sign converged faster in MLS based ARSM by drop-
ping the number of iterations from 6 to 2 and sub-
sequently, reducing the FE runs from 67 to 23.
Thus, reduction of 65% in FE runs is noticed. Sim-
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Figure 5: Response surfaces constructed for all the nf natural frequencies with support points (•)

Figure 6: Objective function with respect to the
updating parameters along with support points
generated in ARSM as shown in Fig. 5

Figure 7: Convergence of the objective function
with MLS based ARSM and gradient based opti-
mization

ilarly for MLS with regularized weight function, D–
Optimal design also shows faster convergence with
5 iterations and 31 FE runs as compared to 11 it-
erations and 67 FE runs for both LS and MLS us-

ing exponential weight function based ARSM. In
all the six cases of Koshal DOE (see Table 2), one
can notice no change in number of iterations and
support points. This is plausibly due to the fact
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that this DOE scheme generates minimal support
points which is minimal for coefficient evaluation
and subsequently, the effect of weight function in
MLS is not significant. Thus for similar polyno-
mial basis, the minimized objective functions are
almost identical at each iterations. The increase in
support points, as in the case of D–Optimal De-
sign (also, Full Factorial and Central Composite
Designs) shows a significant improvement in MLS
based ARSM, especially with regularized weights.
Moreover, direct gradient optimization without em-
ploying ARSM is also performed for elucidating the
effectiveness of meta-modelling. It is also observed
that ARSM formed by LS converges slower than
the direct gradient optimization. Similar conclu-
sions can be seen for Koshal Design based support
points too. But quadratic polynomial approxima-
tion using exponential and regularized weight func-
tions show speedy convergence for Central Compos-
ite Design (also, D–Optimal and Full Factorial De-
signs). Additionally, linear approximation based on
regularized weight function shows better efficiency
than direct gradient optimization. A convergence
comparison of the both is presented in Fig. 7. In
this study, the duplicate FE runs are avoided and
thus, reducing actual FE runs (represented in first
brackets in Table 2). The above numerical study
and discussion justifies the use of MLS based re-
sponse surface meta-modelling in FE model updat-
ing.

7. Conclusions

This study deals with application of ARSM in
FE model updating of RC road bridge. Response
surface methodology surrogates the physically time
consuming FE model analysis of multivariate input-
output relations. Additionally, these surrogating
methodology helps in considering unsmooth, non-
linear or discontinuous functions with efficiency. A
comparative numerical study is performed using LS
based RSM and MLS based RSM with exponen-
tial and regularized weight functions for linear and
quadratic approximations. Also, efficiency of dif-
ferent DOE schemes are studied in this framework.
Following are the conclusions from this study

• Generally, it is noted that MLS based RSM
are better than LS based RSM. Especially,
regularized weighted MLS based RSM per-
forms better than exponentially weighted
MLS based RSM.

• Selection of DOE scheme for support points
is critical. Koshal Design shows no difference
in FE runs and optimized results with LS
and MLS based RSM. Whereas D–Optimal,
Full Factorial and Central Composite Designs
show appreciable difference in performance of
meta-models with MLS based RSM.

• As compared to gradient method based opti-
mization for FE model updating, MLS based
RSM converged faster except for exponential
weighted linear polynomial basis and Koshal
Design.

Application of ARSM in FE model updating can be
studied further in details with more DOE schemes
and weight functions by using more number of up-
dating parameters.
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