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Self-learning algorithms prove high potential in metamodeling for CAE-based applications. Especially if large 
amounts of data from simulation or experiments are available, they outperform “classic” regression methods.
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Introduction
Artifi cial Intelligence (AI) is the new shooting star in science and 
every industry has high hopes in using the “new” technology for 
almost everything. In this article, we would like to discuss what 
is “new” in AI for Computer Added Engineering (CAE) and what 
we can expect using AI-based technology for CAE applications. 
Starting with Wikipedia (en.wikipedia.org/wiki/Artifi cial_intel-
ligence): “In computer science, artifi cial intelligence (AI), some-
times called machine intelligence, is intelligence demonstrated 
by machines, in contrast to the natural intelligence displayed 
by humans and animals. Colloquially, the term “artifi cial intel-
ligence” is used to describe machines that mimic “cognitive” 
functions that humans associate with other human minds, 
such as “learning” and “problem solving”. Continuing in related 
articles, we can extract that, like AI, different mathematical 
tools, which mimic natural intelligence by machine intelligence 
using computers, are understood. By searching for CAE applica-
tions, we will fi nd several methods which are well known for a 
long time. This is mainly the methodology for solving optimi-
zation problems inspired by nature, such as evolutionary algo-
rithms including genetic programming, swarm intelligence, as 
well as simulated annealing or, inspired by the human brain, 
so-called Artifi cial Neural Networks (ANN) are used. 

Especially so-called Machine Learning (ML) algorithms ex-
tending ANN to deep forward neural or deep recurrent net-
work as well as using support vector machines, which have 
made signifi cant progress in the last decades, is indeed 
“new” in the context of AI for CAE. Taking advantage of that 
new technology and the availability of large data set and ris-
ing compute power, we expect that ML has a large poten-
tial for surrogate modeling. In purely mathematically driven 
surrogate models, often called meta-models, the learning 
process tries to understand how the response variability of 

Fig. 1: Typical steps of machine learning algorithms (Source: www.machine-

learning-blog.com)
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a data set is correlated to variability of the inputs directly on 
the available data sets without further assumptions on the 
underlying physics. The required data may be collected from 
real measurements as applied for digital twins or in autono-
mous drive applications or may be obtained from simula-
tions typically used in CAE based design. 
 Of course, using correlation and regression analysis for 
meta-modeling, the process of clean, train, test data and 
try to learn what is the best combination of dimensional-
ity and basis function is also not really new. Therefore, this 
article will start with introducing classical regression meth-
ods for meta-modeling, discussing the problem of over-
fi tting, which does not disappear with machine learning, 
defi ne machine learning algorithms and fi nally present the 
integration of machine learning technology into Dynardo’s 
software tools.

Classical regression methods
In classical regression methods, a defi ned set of basis func-
tions is used to set up a mathematical response surface 
model. Linear regression (Montgomery 2003) with linear 
or higher basis functions are a common basic approach, 
where a global set of basis functions is defi ned for a specifi c 
problem and for each basis function term the correspond-
ing coeffi cient has to be calculated. Often this is done by 
a minimized least squares approach, in which the squared 
errors between data and model approximation are mini-

mized. If the chosen global basis terms are not suitable to 
represent a physical phenomenon, this obtained response 
surface function is even in cases with suffi cient high num-
ber of data points often not acceptable accurate. 
In contrast to the global approach, local response surface 
methods like Moving Least Squares, Radial Basis Functions, 
or Kriging use basis terms with local support functions. 
With the help of a scaling factor the area of this local sup-
port can be defi ned. All available data points are usually 
considered as support of these local basis functions. This 
means, with increasing the data amount, the approxima-
tion quality of these local models raises. But in case of noisy 
data points, caused by solver noise in CAE or measurement 
errors in experimental analyses, such local models may 
tend to overfi tting, by representing artifi cial oscillations in 
the approximation function. The overfi tting needs special 
attention in the training and in the quantifi cation of the ac-
curacy of the surrogate model. 
 In the classical response surface approach, usually a 
specifi c model type and basis terms are chosen and trained 
with the data and later the approximation quality is quanti-
fi ed by some error measure. Often the Coeffi cient of Deter-
mination (CoD) as a measure of the goodness of fi t is used 
for this purpose. Unfortunately, measuring the accuracy of 
fi t is only suitable in cases, when the underlying regression 
model is not arbitrary fl exible to enable local overfi tting. 
In case of a global linear regression, the CoD is suitable, if 
the number of unknown regression terms is much smaller 

Fig. 2: Overview on different Machine Learning strategies (Source: www.morethandigital.info)



Title Story // Machine Learning

4

as the number of available data points. If local regression 
models are used, as MLS or Kriging the CoD measure usu-
ally becomes too optimistic. In cases with signifi cant solver 
noise, the approximation function may be strongly distort-
ed by local oscillations which imply artifi cial non-physical 
correlations. Therefore, measuring the goodness of fi t is in-
capable to avoid the overfi tting and hence measuring the 
forecast quality by means of independent data point sets 
becomes crucial. 
 Today, many more meta-model approaches are available 
and it is often not clear which one is most suitable for a given 
problem (Roos 2007). Another challenge of meta-modeling 
is the so-called “curse of dimensionality”, meaning, that 
there is a dramatic decrease in the quality of approximation 
for all meta-model types as the number of input variables 
increases. As a result, large number of samples are required 
to represent high-dimensional problems with suffi cient ac-
curacy, having at the same time the tendency to overfi t the 
data as pointed out above. In order to overcome these prob-
lems, Dynardo developed the Metamodel of Optimal Prog-
nosis framework (Most and Will 2008, 2011), which will be 
discussed in a later section. Prior to that, we would like to 
introduce different strategies of machine learning.

Machine Learning
The machine learning approach can be seen as an exten-
sion of the classical response surface methods. Instead of 
choosing a predefi ned setup of basis function types and 
terms manually, this approach tries to learn the complexity 
of the required model type itself. The type of this automat-
ed learning now distinguishes between the different levels 
of machine learning.
 In the unsupervised learning so-called unlabeled data, 
which contain only the information about the input values, 
are considered. In clustering approaches for example, this may 
help to fi nd different regions in the variable space, where dif-
ferent data clouds are available, which might be treated dif-
ferently. On the other hand, dimension reduction techniques 
are very promising, in cases where a large number of input 
variables, which show signifi cant local or global dependencies 
to each other, needs to be considered. Exemplarily, the Princi-
pal Component Analysis method or related series expansion 
approaches are mentioned, which are very effi cient to reduce 
a large input dimension to a few representative variables. Re-
duction strategies used in Statistics on Structures (SoS) can be 
labeled as unsupervised machine learning. 
 In the supervised learning approach, the labels of the 
data, often understood as response variables, which de-
scribe a phenomenon depending on the input variables, are 
represented by a set of mathematical surrogate functions. 
During the learning or training process, the complexity of 
the function set is automatically adjusted to the require-
ments represented by the data. For example, the Support 
Vector Classifi cation and Regression, which uses local basis 
functions similar to Kriging, reduces the set of relevant ba-

sis terms automatically to these support points, which are 
required to build the class separation or the response func-
tion suffi ciently. This case is an example for automatic se-
lection of necessary data points. In the chapter “Metamodel 
of Optimal Prognosis” Dynardo’s MOP technology is intro-
duced and discussed as supervised machine learning ap-
proach with the focus on detecting the most important 
input variables as well as suitable regression functions. 
 Reinforcement learning approaches differ from super-
vised learning by the presence of labeled input/response 
pairs, and by sub-optimal pairs not being explicitly cor-
rected. Instead the focus is on fi nding a balance between 

Fig. 4: Simple feed-forward neural network consisting of one hidden layer and 

deep learning network with several hidden layers

Fig. 3: The Coeffi cient of Prognosis as measure of the prediction quality based 

on independent test data points
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exploration (of uncharted input territory) and exploitation 
(of current meta-models about input response correlation). 
Therefore, adaptive strategies are used to add additional 
support points in uncharted areas, respectively areas of in-
terest to improve the forecast quality of meta-models. Dy-
nardo’s Adaptive Metamodels of Optimal Prognosis (AMOP) 
can be classifi ed as a reinforced learning strategy. 

Metamodel of Optimal Prognosis
The Metamodel of Optimal Prognosis (MOP, Most & Will 2008, 
2011) can be seen as an advanced machine learning approach 
with automatic feature detection. Based on the Coeffi cient 
of Prognosis (CoP), which measures the forecast quality of an 
approximation model instead of the goodness of fi t, the MOP 
approach evaluates different regression methods with differ-
ent basis terms. Based on advanced fi lter strategies, different 
input variable combinations, which span different subspaces, 
are analyzed for different available regression model types. As 
a result, the optimal input variable set including the optimal 
approximation technique is obtained, which reaches the larg-
est CoP value for a given support point data set. 

One key point in this approach is the CoP, which allows to 
quantify the prediction quality of the approximation model 
independently of the model type. This measure is appli-
cable also for interpolation models with perfect goodness 
of fi t. The CoP estimates the fraction of explained variation 
in the prediction of the model. The residuals are calculated 
by using an independent test point set to estimate the ap-
proximation errors at test points. Based on the cross-vali-
dation principle, the prediction residuals are obtained for 
each data point set by a systematic exchange of regression 
and test points. With help of this procedure, an automatic 
selection of regression model types and variable subspaces 
is possible within the machine learning process. 
 Figure 3 shows a data set, which is splitted 50/50 to test 
and regression points in case 1 and vice versa in case 2. Unless 
advanced regression models are able to show a perfect fi tting 
quality (CoD), the forecast quality (CoP) quantifi es the true 
ability of the models to represent the data set response value 
variation. The difference between CoD and CoP quantifi es the 
overfi tting. It should be noted that in the test case 23% of arti-
fi cial noise is represented. By using more data points, the CoP 
measure of any representative spit will converge to 77%. 

Fig. 5: Typical neural network types and architectures (Source: Fjodor van Veen, Asimov Institute, 2016)
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Fig. 6: Set up of optiSLang Deep Learning Extension models in the MOP set-

tings (top: selection of feed-forward model for the MOP competition, bottom: 

automatic and manual network setup)

Fig. 7: Rotational stiffness of a turbine impeller approximated by Kriging Fig. 8: Rotational stiffness of a turbine impeller approximated by a feed-forward 

network within the full parameter and the reduced optimal parameter space
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data sets with more than 1000 samples, a signifi cant speed 
up for the training is possible compared to classical meth-
ods as Kriging. Actually, the deep learning extension con-
tains feed-forward deep learning models with automatic 
confi guration of the network topology. Within the exten-
sion, the analyzed different model architectures are initial-
ized and trained using the Tensorfl ow library, which can be 
effi ciently parallelized on CPU and GPU environments.

Example
The rotational stiffness of a turbine impeller was analyzed. 
Therefore, 176 samples of a Latin Hypercube Sampling with 
13 geometry parameters as inputs have been considered. 
The response values, as rotational and axial stiffnesses as 
well as performance measures like isotropic effi ciency and 
mass fl ow and even life time estimates have been obtained 
for each parameter combination by a time-consuming 
multi-disciplinary analysis including computational me-
chanics, fl uid dynamics and fatigue analysis. That industri-
al example was used to test the performance and accuracy 
of the optiSLang deep learning extension. In Figure 7 the 
reference solution using the MOP dimension reduction and 
Kriging approximation is shown. The best possible global 
forecast quality is 99%. In Figure 8 the approximation func-
tions for the rotational stiffness are shown for a neural net-
work approximation considering all 13 parameters on the 
fi rst case and only the most important 6 geometry param-
eters in the second. In case one Figure 8 clearly indicates 
that the highly nonlinear behavior of the response cannot 
be represented suffi ciently. Due to the fl exibility of the 
model, the accuracy of fi t, measured by the CoD, is almost 
perfect, while the forecast quality, quantifi ed by the CoP, is 
signifi cantly less. Consequently, the deep learning training, 
which uses early stopping based on a validation data set 
to avoid overfi tting, results in a rather weak trained model 
in the full space. This phenomenon is critical especially for 
smaller data sets. In such cases the automatic variable fi l-
tering of the MOP approach is very promising, as shown in 
this example. The forecast quality could be increased from 
81% to 98% by training the neural network with the same 
topology but in the reduced optimal subspace.
 As already pointed out in chapter “Artifi cial Neural 
Networks and Deep Learning”, in case of small data sets 

Artifi cial Neural Networks and Deep Learning
Artifi cial neural networks are a special type of machine 
learning methods, which mimic the learning process of the 
human brain: based on simple neuron activation functions, 
sophisticated phenomena can be learned just by increasing 
the complexity of the network with more and more neu-
rons and connections. So-called deep learning neural net-
works consist usually of several layers of neurons with non-
linear activation functions, whereby each neuron of each 
layer is itself connected to all neurons of the previous and 
the following layer. With increasing number of neurons, the 
complexity of the overall surrogate function increases sig-
nifi cantly. Since the training algorithms are mainly based 
on simply update rules using stochastic optimizers, even 
such sophisticated deep learning networks can be effi cient-
ly trained. Especially, during the last ten years, the effi ciency 
of the training methods could be improved dramatically. 
This opened the door for more and more complex network 
types and architectures and therefor for more applications.
 In comparison to classical regressions methods, whose 
number of data points usually increases the training effort 
exponentially, the training of deep learning networks is still 
effi cient for large data sets. Due to the simplicity of the 
training, parallelization techniques can be applied easily.
 In cases of a suffi cient amount of data, a deep learn-
ing network structure is able to detect important features 
itself automatically during the training procedure. In oppo-
site cases, where the amount of data is limited, the reduc-
tion of input variables to only the important subset in the 
MOP workfl ow can signifi cantly improve the approximation 
quality of a neural network similarly to classical regression 
methods. Usually, in such cases, the different approxima-
tion models show a similar performance. In our experience, 
the deep learning networks are a very powerful exten-
sion to the classical regression methods, especially if large 
amount of data are available. 

optiSLang’s Deep Learning Extension
With the optiSLang deep learning extension, deep learn-
ing neural networks can be considered in the model test-
ing process of the Metamodel of Optimal Prognosis. Based 
on the CoP, the available models are tested and compared. 
Finally, the best model type is selected. Especially, for large 

Table 1: Comparison of numerical performance between Kriging and neural networks on a fi ve-dimensional analytical benchmark function using computation on CPU only

Samples Kriging Deep Learning Extension

Training CoP Hidden neurons Training CoP

100 2 sec 99.99 % 3 x 10 3 min 99.73 %

500 3 min 99.99 % 3 x 20 7 min 99.96 %

2000 330 min 99.99 % 4 x 30 12 min 99.98 %

10000 not possible 4 x 50 72 min 99.99 %
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terfacing of external machine learning algorithms to the 
MOP workfl ow is open to any third-party machine learning 
algorithm. 
 Right now, we are working on extensions to non-scalar 
meta-models, which will open the competition to Dynardo 
internal solutions for fi eld MOP using Statistics of struc-
tures (SoS) as well as to adaptive scalar and fi eld meta-
modeling techniques to improve meta-modeling quality by 
optimally placed additional simulated data points (Adap-
tive Metamodel of Optimal Prognosis, AMOP).

Authors //
Thomas Most, Johannes Will, Jonas Rotermund, Lars Gräning 
(Dynardo GmbH)
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(50...200) the AI-based deep learning networks show a simi-
lar performance to MLS or Kriging in the MOP workfl ow. In 
our experience, the deep learning networks become a very 
powerful extension to the classical regression methods, es-
pecially if large amount of data are available. Table 1 (see 
previous page) shows the comparison of numerical perfor-
mance using a fi ve-dimensional test example of a non-linear 
function. It can be clearly seen, that Kriging, which is able to 
reproduce the nonlinearity, will fail because of its numerical 
effort when the available numbers of sample rise.

Summary
This article discussed the relevance of “new” AI-technol-
ogies in the context of CAE applications. Fortunately, the 
CAE community in case of AI-based machine learning algo-
rithms can take benefi t of the enormous investments over 
the last decade in implementing public available libraries 
like TensorFlow from Google or Microsoft Cognitive Tool-
kit into CAE software applications. The article discusses in 
detail the MOP framework as supervised machine learning 
approach and the integration of feedforward neural net-
works into the MOP competition for the best possible me-
ta-model. Within the MOP workfl ow, overfi tting by using 
ANN is avoided due to rigorous testing of the forecast qual-
ity with help of the CoP. Users can investigate and quantify 
the global and local forecast quality of an ANN directly in 
comparison to classic meta-modeling techniques. The in-

Fig. 9: Representation of different types of machine learning in dynardo technology (Source: www.morethandigital.info)
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